07.05.2019

Обеспечение клеток энергией. Источники энергии. Энергия запасается в виде атф, которая затем используется в организме для синтеза веществ, выделения тепла, мышечные сокращения и т.Д


Обмен веществ (метаболизм) - это совокупность всех химических реакций, которые происходят в организме. Все эти реакции делятся на 2 группы


1. Пластический обмен (ассимиляция, анаболизм, биосинтез) - это когда из простых веществ с затратой энергии образуются (синтезируются) более сложные. Пример:

  • При фотосинтезе из углекислого газа и воды синтезируется глюкоза.

2. Энергетический обмен (диссимиляция, катаболизм, дыхание) - это когда сложные вещества распадаются (окисляются) до более простых, и при этом выделяется энергия , необходимая для жизнедеятельности. Пример:

  • В митохондриях глюкоза, аминокислоты и жирные кислоты окисляются кислородом до углекислого газа и воды, при этом образуется энергия (клеточное дыхание)

Взаимосвязь пластического и энергетического обмена

  • Пластический обмен обеспечивает клетку сложными органическими веществами (белками, жирами, углеводами, нуклеиновыми кислотами), в том числе белками-ферментами для энергетического обмена.
  • Энергетический обмен обеспечивает клетку энергией. При выполнении работы (умственной, мышечной и т.п.) энергетический обмен усиливается.

АТФ – универсальное энергетическое вещество клетки (универсальный аккумулятор энергии). Образуется в процессе энергетического обмена (окисления органических веществ).

  • При энергетическом обмене все вещества распадаются, а АТФ - синтезируется. При этом энергия химических связей распавшихся сложных веществ переходит в энергию АТФ, энергия запасается в АТФ .
  • При пластическом обмене все вещества синтезируются, а АТФ - распадается. При этом расходуется энергия АТФ (энергия АТФ переходит в энергию химических связей сложных веществ, запасается в этих веществах).

Выберите один, наиболее правильный вариант. В процессе пластического обмена
1) более сложные углеводы синтезируются из менее сложных
2) жиры превращаются в глицерин и жирные кислоты
3) белки окисляются с образованием углекислого газа, воды, азотсодержащих веществ
4) происходит освобождение энергии и синтез АТФ

Ответ


Выберите три варианта. Чем пластический обмен отличается от энергетического?
1) энергия запасается в молекулах АТФ
2) запасенная в молекулах АТФ энергия расходуется
3) органические вещества синтезируются
4) происходит расщепление органических веществ
5) конечные продукты обмена - углекислый газ и вода
6) в результате реакций обмена образуются белки

Ответ


Выберите один, наиболее правильный вариант. В процессе пластического обмена в клетках синтезируются молекулы
1) белков
2) воды
3) АТФ
4) неорганических веществ

Ответ


Выберите один, наиболее правильный вариант. В чем проявляется взаимосвязь пластического и энергетического обмена
1) пластический обмен поставляет органические вещества для энергетического
2) энергетический обмен поставляет кислород для пластического
3) пластический обмен поставляет минеральные вещества для энергетического
4) пластический обмен поставляет молекулы АТФ для энергетического

Ответ


Выберите один, наиболее правильный вариант. В процессе энергетического обмена, в отличие от пластического, происходит
1) расходование энергии, заключенной в молекулах АТФ
2) запасание энергии в макроэргических связях молекул АТФ
3) обеспечение клеток белками и липидами
4) обеспечение клеток углеводами и нуклеиновыми кислотами

Ответ


1. Установите соответствие между характеристикой обмена и его видом: 1) пластический, 2) энергетический. Запишите цифры 1 и 2 в правильном порядке.
А) окисление органических веществ
Б) образование полимеров из мономеров
В) расщепление АТФ
Г) запасание энергии в клетке
Д) репликация ДНК
Е) окислительное фосфорилирование

Ответ


2. Установите соответствие между характеристикой обмена веществ в клетке и его видом: 1) энергетический, 2) пластический. Запишите цифры 1 и 2 в порядке, соответствующим буквам.
А) происходит бескислородное расщепление глюкозы
Б) происходит на рибосомах, в хлоропластах
В) конечные продукты обмена – углекислый газ и вода
Г) органические вещества синтезируются
Д) используется энергия, заключенная в молекулах АТФ
Е) освобождается энергия и запасается в молекулах АТФ

Ответ


3. Установите соответствие между признаками обмена веществ у человека и его видами: 1) пластический обмен, 2) энергетический обмен. Запишите цифры 1 и 2 в правильном порядке.
А) вещества окисляются
Б) вещества синтезируются
В) энергия запасается в молекулах АТФ
Г) энергия расходуется
Д) в процессе участвуют рибосомы
Е) в процессе участвуют митохондрии

Ответ


4. Установите соответствие между характеристиками обмена веществ и его видом: 1) энергетический, 2) пластический. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) репликация ДНК
Б) биосинтез белка
В) окисление органических веществ
Г) транскрипция
Д) синтез АТФ
Е) хемосинтез

Ответ


5. Установите соответствие между характеристиками и видами обмена: 1) пластический, 2) энергетический. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) запасается энергия в молекулах АТФ
Б) синтезируются биополимеры
В) образуются углекислый газ и вода
Г) происходит окислительное фосфорилирование
Д) происходит репликация ДНК

Ответ


Выберите три процесса, относящихся к энергетическому обмену веществ.
1) выделение кислорода в атмосферу
2) образование углекислого газа, воды, мочевины
3) окислительное фосфорилирование
4) синтез глюкозы
5) гликолиз
6) фотолиз воды

Ответ


Выберите один, наиболее правильный вариант. Энергия, необходимая для мышечного сокращения, освобождается при
1) расщеплении органических веществ в органах пищеварения
2) раздражении мышцы нервными импульсами
3) окислении органических веществ в мышцах
4) синтезе АТФ

Ответ


Выберите один, наиболее правильный вариант. В результате какого процесса в клетке синтезируются липиды?
1) диссимиляции
2) биологического окисления
3) пластического обмена
4) гликолиза

Ответ


Выберите один, наиболее правильный вариант. Значение пластического обмена – снабжение организма
1) минеральными солями
2) кислородом
3) биополимерами
4) энергией

Ответ


Выберите один, наиболее правильный вариант. Окисление органических веществ в организме человека происходит в
1) легочных пузырьках при дыхании
2) клетках тела в процессе пластического обмена
3) процессе переваривания пищи в пищеварительном тракте
4) клетках тела в процессе энергетического обмена

Ответ


Выберите один, наиболее правильный вариант. Какие реакции обмена веществ в клетке сопровождаются затратами энергии?
1) подготовительного этапа энергетического обмена
2) молочнокислого брожения
3) окисления органических веществ
4) пластического обмена

Ответ


1. Установите соответствие между процессами и составляющими частями метаболизма: 1) анаболизм (ассимиляция), 2) катаболизм (диссимиляция). Запишите цифры 1 и 2 в правильном порядке.
А) брожение
Б) гликолиз
В) дыхание
Г) синтез белка
Д) фотосинтез
Е) хемосинтез

Ответ


2. Установите соответствие между характеристиками и процессами обмена веществ: 1) ассимиляция (анаболизм), 2) диссимиляция (катаболизм). Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) синтез органических веществ организма
Б) включает подготовительный этап, гликолиз и окислительное фосфорилирование
В) освобожденная энергия запасается в АТФ
Г) образуются вода и углекислый газ
Д) требует энергетических затрат
Е) происходит в хлоропластах и на рибосомах

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Обмен веществ – одно из основных свойств живых систем, он характеризуется тем, что происходит
1) избирательное реагирование на внешние воздействия окружающей среды
2) изменение интенсивности физиологических процессов и функций с различными периодами колебаний
3) передача из поколения в поколение признаков и свойств
4) поглощение необходимых веществ и выделение продуктов жизнедеятельности
5) поддержание относительно-постоянного физико-химического состава внутренней среды

Ответ


1. Все приведенные ниже термины, кроме двух, используются для описания пластического обмена. Определите два термина, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) репликация
2) дупликация
3) трансляция
4) транслокация
5) транскрипция

Ответ


2. Все перечисленные ниже понятия, кроме двух, используют для описания пластического обмена веществ в клетке. Определите два понятия, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) ассимиляция
2) диссимиляция
3) гликолиз
4) транскрипция
5) трансляция

Ответ


3. Перечисленные ниже термины, кроме двух, используются для характеристики пластического обмена. Определите два термина, выпадающих из общего списка, и запишите цифры, под которыми они указаны.
1) расщепление
2) окисление
3) репликация
4) транскрипция
5) хемосинтез

Ответ


Выберите один, наиболее правильный вариант. Азотистое основание аденин, рибоза и три остатка фосфорной кислоты входят в состав
1) ДНК
2) РНК
3) АТФ
4) белка

Ответ


Все приведённые ниже признаки, кроме двух, можно использовать для характеристики энергетического обмена в клетке. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны.
1) идёт с поглощением энергии
2) завершается в митохондриях
3) завершается в рибосомах
4) сопровождается синтезом молекул АТФ
5) завершается образованием углекислого газа

Ответ


Найдите три ошибки в приведенном тексте. Укажите номера предложений, в которых они сделаны. (1) Обмен веществ, или метаболизм, – это совокупность реакций синтеза и распада веществ клетки и организма, связанных с выделением или поглощением энергии. (2) Совокупность реакций синтеза высокомолекулярных органических соединений из низкомолекулярных соединений относят к пластическому обмену. (3) В реакциях пластического обмена синтезируются молекулы АТФ. (4) Фотосинтез относят к энергетическому обмену. (5) В результате хемосинтеза синтезируются органические вещества из неорганических за счет энергии Солнца.

Ответ

© Д.В.Поздняков, 2009-2019

Из клеток состоят все живые организмы, кроме вирусов. Они обеспечивают все необходимые для жизни растения или животного процессы. Клетка и сама может быть отдельным организмом. И разве может такая сложная структура жить без энергии? Конечно, нет. Так как же происходит обеспечение клеток энергией? Оно базируется на процессах, которые мы рассмотрим ниже.

Обеспечение клеток энергией: как это происходит?

Немногие клетки получают энергию извне, они вырабатывают ее сами. обладают своеобразными "станциями". И источником энергии в клетке является митохондрия — органоид, который ее вырабатывает. В нем происходит процесс клеточного дыхания. За счет него и происходит обеспечение клеток энергией. Однако присутствуют они только у растений, животных и грибов. В клетках бактерий митохондрии отсутствуют. Поэтому у них обеспечение клеток энергией происходит в основном за счет процессов брожения, а не дыхания.

Строение митохондрии

Это двумембранный органоид, который появился в эукариотической клетке в процессе эволюции в результате поглощения ею более мелкой Этим можно объяснить то, что в митохондриях присутствует собственная ДНК и РНК, а также митохондриальные рибосомы, вырабатывающие нужные органоидам белки.

Внутренняя мембрана обладает выростами, которые называются кристы, или гребни. На кристах и происходит процесс клеточного дыхания.

То, что находится внутри двух мембран, называется матрикс. В нем расположены белки, ферменты, необходимые для ускорения химических реакций, а также молекулы РНК, ДНК и рибосомы.

Клеточное дыхание — основа жизни

Оно проходит в три этапа. Давайте рассмотрим каждый из них более подробно.

Первый этап — подготовительный

Во время этой стадии сложные органические соединения расщепляются на более простые. Так, белки распадаются до аминокислот, жиры — до карбоновых кислот и глицерина, нуклеиновые кислоты — до нуклеотидов, а углеводы — до глюкозы.

Гликолиз

Это бескислородный этап. Он заключается в том, что вещества, полученные во время первого этапа, расщепляются далее. Главные источники энергии, которые использует клетка на данном этапе, — молекулы глюкозы. Каждая из них в процессе гликолиза распадается до двух молекул пирувата. Это происходит во время десяти последовательных химических реакций. Вследствие первых пяти глюкоза фосфорилируется, а затем расщепляется на две фосфотриозы. При следующих пяти реакциях образуется две молекулы и две молекулы ПВК (пировиноградной кислоты). Энергия клетки и запасается именно в виде АТФ.

Весь процесс гликолиза можно упрощенно изобразить таким образом:

2НАД+ 2АДФ + 2Н 3 РО 4 + С 6 Н 12 О 6 2Н 2 О + 2НАД. Н 2 +2С 3 Н 4 О 3 + 2АТФ

Таким образом, используя одну молекулу глюкозы, две молекулы АДФ и две фосфорной кислоты, клетка получает две молекулы АТФ (энергия) и две молекулы пировиноградной кислоты, которую она будет использовать на следующем этапе.

Третий этап — окисление

Данная стадия происходит только при наличии кислорода. Химические реакции этого этапа происходят в митохондриях. Именно это и есть основная часть во время которой высвобождается больше всего энергии. На этом этапе вступая в реакцию с кислородом, расщепляется до воды и углекислого газа. Кроме того, при этом образуется 36 молекул АТФ. Итак, можно сделать вывод, что главные источники энергии в клетке — глюкоза и пировиноградная кислота.

Суммируя все химические реакции и опуская подробности, можно выразить весь процесс клеточного дыхания одним упрощенным уравнением:

6О 2 + С 6 Н 12 О 6 + 38АДФ + 38Н 3 РО 4 6СО 2 + 6Н2О + 38АТФ.

Таким образом, в ходе дыхания из одной молекулы глюкозы, шести молекул кислорода, тридцати восьми молекул АДФ и такого же количества фосфорной кислоты клетка получает 38 молекул АТФ, в виде которой и запасается энергия.

Разнообразие ферментов митохондрий

Энергию для жизнедеятельности клетка получает за счет дыхания — окисления глюкозы, а затем пировиноградной кислоты. Все эти химические реакции не могли бы проходить без ферментов — биологических катализаторов. Давайте рассмотрим те из них, которые находятся в митохондриях — органоидах, отвечающих за клеточное дыхание. Все они называются оксидоредуктазами, потому что нужны для обеспечения протекания окислительно-восстановительных реакций.

Все оксидоредуктазы можно разделить на две группы:

  • оксидазы;
  • дегидрогеназы;

Дегидрогеназы, в свою очередь, делятся на аэробные и анаэробные. Аэробные содержат в своем составе кофермент рибофлавин, который организм получает из витамина В2. Аэробные дегидрогеназы содержат в качестве коферментов молекулы НАД и НАДФ.

Оксидазы более разнообразны. В первую очередь они делятся на две группы:

  • те, которые содержат медь;
  • те, в составе которых присутствует железо.

К первым относятся полифенолоксидазы, аскорбатоксидаза, ко вторым — каталаза, пероксидаза, цитохромы. Последние, в свою очередь, делятся на четыре группы:

  • цитохромы a;
  • цитохромы b;
  • цитохромы c;
  • цитохромы d.

Цитохромы а содержат в своем составе железоформилпорфирин, цитохромы b — железопротопорфирин, c — замещенный железомезопорфирин, d — железодигидропорфирин.

Возможны ли другие пути получения энергии?

Несмотря на то что большинство клеток получают ее в результате клеточного дыхания, существуют также анаэробные бактерии, для существования которых не нужен кислород. Они вырабатывают необходимую энергию путем брожения. Это процесс, в ходе которого с помощью ферментов углеводы расщепляются без участия кислорода, вследствие чего клетка и получает энергию. Различают несколько видов брожения в зависимости от конечного продукта химических реакций. Оно бывает молочнокислое, спиртовое, маслянокислое, ацетон-бутановое, лимоннокислое.

Для примера рассмотрим Его можно выразить вот таким уравнением:

С 6 Н 12 О 6 С 2 Н 5 ОН + 2СО 2

То есть одну молекулу глюкозы бактерия расщепляет до одной молекулы этилового спирта и двух молекул оксида (IV) карбона.

Преизобильное ращение тучных дерев,
которые на бесплодном песку корень
свой утвердили, ясно изъявляет, что
жирными листами жирный тук из воздуха
впитывают...
М. В. Ломоносов

Как энергия запасается в клетке? Что такое метаболизм? В чем суть процессов гликолиза, брожения и клеточного дыхания? Какие процессы проходят на световой и темновой фазах фотосинтеза? Как связаны процессы энергетического и пластического обмена? Что представляет собой хемосинтез?

Урок-лекция

Способность преобразовывать одни виды энергии в другие (энергию излучения в энергию химических связей, химическую энергию в механическую и т. п.) относится к числу фундаментальных свойств живого. Здесь мы подробно рассмотрим, каким образом реализуются эти процессы у живых организмов.

АТФ - ГЛАВНЫЙ ПЕРЕНОСЧИК ЭНЕРГИИ В КЛЕТКЕ . Для осуществления любых проявлений жизнедеятельности клеток необходима энергия. Автотрофные организмы получают исходную энергию от Солнца в ходе реакций фотосинтеза, гетеротрофные же в качестве источника энергии используют органические соединения, поступающие с пищей. Энергия запасается клетками в химических связях молекул АТФ (аденозинтрифосфат) , которые представляют собой нуклеотид, состоящий из трех фосфатных групп, остатка сахара (рибозы) и остатка азотистого основания (аденина) (рис. 52).

Рис. 52. Молекула АТФ

Связь между фосфатными остатками получила название макроэргической, поскольку при ее разрыве выделяется большое количество энергии. Обычно клетка извлекает энергию из АТФ, отщепляя только концевую фосфатную группу. При этом образуется АДФ (аденозиндифосфат), фосфорная кислота и освобождается 40 кДж/моль:

Молекулы АТФ играют роль универсальной энергетической разменной монеты клетки. Они поставляются к месту протекания энергоемкого процесса, будь то ферментативный синтез органических соединений, работа белков - молекулярных моторов или мембранных транспортных белков и др. Обратный синтез молекул АТФ осуществляется путем присоединения фосфатной группы к АДФ с поглощением энергии. Запасание клеткой энергии в виде АТФ осуществляется в ходе реакций энергетического обмена . Он тесно связан с пластическим обменом , в ходе которого клетка производит необходимые для ее функционирования органические соединения.

ОБМЕН ВЕЩЕСТВ И ЭНЕРГИИ В КЛЕТКЕ (МЕТАБОЛИЗМ) . Метаболизм - совокупность всех реакций пластического и энергетического обмена, связанных между собой. В клетках постоянно идет синтез углеводов, жиров, белков, нуклеиновых кислот. Синтез соединений всегда идет с затратой энергии, т. е. при непременном участии АТФ. Источниками энергии для образования АТФ служат ферментативные реакции окисления поступающих в клетку белков, жиров и углеводов. В ходе этого процесса высвобождается энергия, которая аккумулируется в АТФ. Особую роль в энергетическом обмене клетки играет окисление глюкозы. Молекулы глюкозы претерпевают при этом ряд последовательных превращений.

Первый этап, получивший название гликолиз , проходит в цитоплазме клеток и не требует кислорода. В результате последовательных реакций с участием ферментов глюкоза распадается на две молекулы пировиноградной кислоты. При этом расходуются две молекулы АТФ, а высвобождающейся при окислении энергии достаточно для образования четырех молекул АТФ. В итоге энергетический выход гликолиза невелик и составляет две молекулы АТФ:

С 6 Н1 2 0 6 → 2С 3 Н 4 0 3 + 4Н + + 2АТФ

В анаэробных условиях (при отсутствии кислорода) дальнейшие превращения могут быть связаны с различными типами брожений .

Всем известно молочнокислое брожение (скисание молока), которое происходит благодаря деятельности молочнокислых грибков и бактерий. По механизму оно сходно с гликолизом, только окончательным продуктом здесь является молочная кислота. Этот тип окисления глюкозы происходит в клетках при дефиците кислорода, например в интенсивно работающих мышцах. Близко по химизму к молочнокислому и спиртовое брожение. Различие заключается в том, что продуктами спиртового брожения являются этиловый спирт и углекислый газ.

Следующий этап, в ходе которого пировиноградная кислота окисляется, до углекислого газа и воды, получил название клеточное дыхание . Связанные с дыханием реакции проходят в митохондриях растительных и животных клеток, и только при наличии кислорода. Это ряд химических превращений до образования конечного продукта - углекислого газа. На различных этапах такого процесса образуются промежуточные продукты окисления исходного вещества с отщеплением атомов водорода. При этом освобождается энергия, которая «консервируется» в химических связях АТФ, и образуются молекулы воды. Становится понятным, что именно для того, чтобы связать отщепленные атомы водорода, и требуется кислород. Данный ряд химических превращений достаточно сложный и происходит с участием внутренних мембран митохондрий, ферментов, белков-переносчиков.

Клеточное дыхание имеет очень высокую эффективность. Происходит синтез 30 молекул АТФ, еще две молекулы образуются при гликолизе, и шесть молекул АТФ - как результат превращений продуктов гликолиза на мембранах митохондрий. Всего в результате окисления одной молекулы глюкозы образуются 38 молекул АТФ:

C 6 H 12 O 6 + 6Н 2 0 → 6CO 2 + 6H 2 O + 38АТФ

В митохондриях происходят конечные этапы окисления не только сахаров, но также белков и липидов. Эти вещества используются клетками, главным образом когда подходит к концу запас углеводов. Вначале расходуется жир, при окислении которого выделяется существенно больше энергии, чем из равного объема углеводов и белков. Поэтому жир у животных представляет собой основной «стратегический резерв» энергетических ресурсов. У растений же роль энергетического резерва играет крахмал. При хранении он занимает значительно больше места, чем энергетически эквивалентное ему количество жира. Для растений это не служит помехой, поскольку они неподвижны и не носят, как животные, запасы на себе. Извлечь же энергию из углеводов можно гораздо быстрее, чем из жиров. Белки выполняют в организме многие важные функции, поэтому вовлекаются в энергетический обмен только при исчерпании ресурсов сахаров и жиров, например при длительном голодании.

ФОТОСИНТЕЗ . Фотосинтез - это процесс, в ходе которого энергия солнечных лучей преобразуется в энергию химических связей органических соединений. В растительных клетках связанные с фотосинтезом процессы протекают в хлоропластах. Внутри этой органеллы находятся системы мембран, в которые встроены пигменты, улавливающие лучистую энергию Солнца. Основной пигмент фотосинтеза - хлорофилл, который поглощает преимущественно синие и фиолетовые, а также красные лучи спектра. Зеленый свет при этом отражается, поэтому сам хлорофилл и содержащие его части растений кажутся зелеными.

В фотосинтезе выделяют две фазы - световую и темновую (рис. 53). Собственно улавливание и преобразование лучистой энергии происходит во время световой фазы. При поглощении квантов света хлорофилл переходит в возбужденное состояние и становится донором электронов. Его электроны передаются от одного белкового комплекса к другому по цепи переноса электронов. Белки этой цепи, как и пигменты, сосредоточены на внутренней мембране хлоропластов. При переходе электрона по цепи переносчиков он теряет энергию, которая используется для синтеза АТФ. Часть возбужденных светом электронов используется для восстановления НДФ (никотинамидадениндинуклеотифосфат), или НАДФ·Н.

Рис. 53. Продукты реакций световой и темновой фаз фотосинтеза

Под действием солнечного света в хлоропластах происходит также расщепление молекул воды - фотолиз ; при этом возникают электроны, которые возмещают потери их хлорофиллом; в качестве побочного продукта при этом образуется кислород:

Таким образом, функциональный смысл световой фазы заключается в синтезе АТФ и НАДФ·Н путем преобразования световой энергии в химическую.

Для реализации темновой фазы фотосинтеза свет не нужен. Суть проходящих здесь процессов заключается в том, что полученные в световую фазу молекулы АТФ и НАДФ·Н используются в серии химических реакций, «фиксирующих» СОг в форме углеводов. Все реакции темновой фазы осуществляются внутри хлоропластов, а освобождающиеся при «фиксации» углекислоты АДФ и НАДФ вновь используются в реакциях световой фазы для синтеза АТФ и НАДФ·Н.

Суммарное уравнение фотосинтеза имеет следующий вид:

ВЗАИМОСВЯЗЬ И ЕДИНСТВО ПРОЦЕССОВ ПЛАСТИЧЕСКОГО И ЭНЕРГЕТИЧЕСКОГО ОБМЕНА . Процессы синтеза АТФ происходят в цитоплазме (гликолиз), в митохондриях (клеточное дыхание) и в хлоропластах (фотосинтез). Все осуществляющиеся в ходе этих процессов реакции - это реакции энергетического обмена. Запасенная в виде АТФ энергия расходуется в реакциях пластического обмена для производства необходимых для жизнедеятельности клетки белков, жиров, углеводов и нуклеиновых кислот. Заметим, что темновая фаза фотосинтеза - это цепь реакций, пластического обмена, а световая - энергетического.

Взаимосвязь и единство процессов энергетического и пластического обмена хорошо иллюстрирует следующее уравнение:

При чтении этого уравнения слева направо получается процесс окисления глюкозы до углекислого газа и воды в ходе гликолиза и клеточного дыхания, связанный с синтезом АТФ (энергетический обмен). Если же прочесть его справа налево, то получается описание реакций темновой фазы фотосинтеза, когда из воды и углекислоты при участии АТФ синтезируется глюкоза (пластический обмен).

ХЕМОСИНТЕЗ . К синтезу органических веществ из неорганических, кроме фотоавтотрофов, способны и некоторые бактерии (водородные, нитрифицирующие, серобактерии и др.). Они осуществляют этот синтез за счет энергии, выделяющейся при окислении неорганических веществ. Их называют хемоавтотрофами. Эти хемосинтезирующие бактерии играют важную роль в биосфере. Например, нитрифицирующие бактерии переводят недоступные для усвоения растениями соли аммония в соли азотной кислоты, которые хорошо ими усваиваются.

Клеточный метаболизм составляют реакции энергетического и пластического обмена. В ходе энергетического обмена происходит образование органических соединений с макроэргическими химическими связями - АТФ. Необходимая для этого энергия поступает от окисления органических соединений в ходе анаэробных (гликолиз, брожение) и аэробных (клеточное дыхание) реакций; от солнечных лучей, энергия которых усваивается на световой фазе (фотосинтез); от окисления неорганических соединений (хемосинтез). Энергия АТФ расходуется на синтез необходимых клетке органических соединений в ходе реакций пластического обмена, к которым относятся и реакции темновой фазы фотосинтеза.

  • В чем заключаются различия между пластическим и энергетическим обменом?
  • Как преобразуется энергия солнечных лучей в световую фазу фотосинтеза? Какие процессы проходят в темновую фазу фотосинтеза?
  • Почему фотосинтез называют процессом отражения планетно-космического взаимодействия?

Организма постоянно связан с обменом энергии. Реакции энергетического обмена происходят постоянно, даже когда мы спим. После сложных химических изменений пищевые вещества превращаются из высокомолекулярных в простые, что сопровождается выделением энергии. Это все энергетический обмен.

Энергетические запросы организма во время бега весьма велики. Например, за 2,5-3 часа бега расходуется около 2600 калорий, (это марафонская дистанция), что значительно превышает энергозатраты ведущего малоподвижный образ жизни человека за день. Во время забега энергия черпается организмом из запасов мышечного гликогена и жиров.

Мышечный гликоген, представляющий собой сложную цепь молекул глюкозы, накапливается в активных группах мышц. В результате аэробного гликолиза и двух других химических процессов гликоген преобразуется в аденозинтрифосфат (АТФ).

Молекула АТФ основной источник энергии в нашем организме. Поддержание энергетического баланса и энергетического обмена происходит на уровне клетки. От дыхания клетки зависит скорость и выносливость бегуна. Поэтому,чтобы достичь наивысших результатов, надо обеспечить клетку кислородом на всю дистанцию. Для этого и нужны тренировки.

Энергия в организме человека. Этапы энергетического обмена.

Мы всегда получаем и тратим энергию. В виде пищи мы получаем основные питательные вещества, или готовые органические вещества, это белки жиры и углеводы. Первый этап, это пищеварение, здесь не происходит выделение энергии которую наш организм может запасти.

Пищеварительный процесс направлен не на получение энергии, а на то, чтобы разбить крупные молекулы на мелкие. В идеале все должно расщепиться до мономеров. Углеводы расщепляется до глюкозы, фруктозы и галактозы. Жиры — до глицерина и жирных кислот,белки до аминокислот.

Дыхание клетки

Кроме пищеварения, есть вторая часть или этап. Это дыхание. Мы дышим и нагнетаем воздух в легкие, но это не основная часть дыхания. Дыхание, это когда наши клетки, используя кислород, сжигают питательные вещества до воды и углекислого газа, чтобы получить энергию. Это конечный этап получения энергии который проходит в каждой нашей клетке.

Основным источником питания человека являются углеводы, накапливаемые в мышцах в виде гликогена, гликогена обычно хватает на 40-45 минут бега. По истечении этого времени организм должен переключиться на другой источник энергии. Это жиры. Жиры — это альтернативная энергия гликогену.

Альтернативная энергия — это значит необходимость выбора одного из двух источников энергии или жиры или гликоген. Наш организм может получать энергию только из какого-то одного источника.

Бег на длинные дистанции отличается от бега на короткие дистанции тем, что организм стайера неизбежно переходит к использованию мышечных жиров как дополнительного источника энергии.

Жирные кислоты - это не самый удачный заменитель углеводов, так как на их выделение и использование уходит гораздо больше энергии и времени. Но если гликоген закончился, то организму ничего не остается, как пустить в ход жиры, добывая таким способом необходимую энергию. Получается, что жиры это всегда запасной вариант для организма.

Замечу, что используемые при беге жиры - это жиры, содержащиеся в мышечных волокнах, а не жировые прослойки, покрывающие тело.

При сжигании или расщеплении любого органического вещества получаются отходы производства, это углекислый газ и вода. Наша органика, это белки, жиры и углеводы. Углекислый газ выдыхается вместе с воздухом, а вода используется организмом или выводится с потом или мочой.

Переваривая питательные вещества, наш организм какую-то часть энергии теряет в виде тепла. Так греется и теряет энергию в пустоту двигатель в автомобиле, так и мышцы бегуна тратят огромное количество энергии. превращая химическую энергию в механическую. Причем КПД составляет порядка 50%, то есть половина энергии уходит в виде тепла в воздух.

Можно выделить основные этапы энергетического обмена:

Мы едим, чтобы получить питательные вещества, расщепляем их, потом при помощи кислорода идет процесс окисления, в итоге получаем энергию. Часть энергии всегда уходит в виде тепла, а часть мы запасаем. Энергия запасается в виде химического соединения которое называется — АТФ.

Что такое АТФ?

АТФ — аденозинтрифосфат, имеющий большое значение в обмене энергии и веществ в организмах. АТФ является универсальным источником энергии для всех биохимических процессов, протекающих в живых системах.


В организме АТФ является одним из самых часто обновляемых веществ, так у человека продолжительность жизни одной молекулы АТФ менее минуты. В течении суток одна молекула АТФ проходит в среднем 2000-3000 циклов ресинтеза. Человеческий организм синтезирует около 40 кг АТФ в день, но содержит в каждый конкретный момент примерно 250 г, то есть запаса АТФ в организме практически не создаётся, и для нормальной жизнедеятельности необходимо постоянно синтезировать новые молекулы АТФ.

Вывод: Наш организм может сам себе запасать энергию в виде химического соединения. Это АТФ.

Атф состоит из азотистого основания-аденина, рибозы и трифосфата- остатков фосфорной кислоты.

Для создания АТф требуется много энергии, но, при ее разрушении можно вернуть эту энергию. Наш организм, расщепляя питательные вещества, создает молекулу АТФ, а потом, когда ему нужна энергия, он расщепляет молекулу АТФ или расщепляет связи молекулы. Отщепляя один из остатков фосфорной кислоты можно получить порядка-40кДж. ⁄ моль.

Так происходит всегда, потому, что нам постоянно нужна энергия, особенно во время бега. Источники ввода энергии в организм могут быть разные (мясо. фрукты. овощи и т. д.) . Внутренний же источник энергии один — это АТФ. Жизнь молекулы меньше минуты. поэтому организм постоянно расщепляет и воспроизводит АТФ.

Энергия расщепления. Энергия клетки

Диссимиляция

Основную энергию мы получаем из глюкозы в виде молекулы АТФ. Так как энергия нам нужна постоянно, эти молекулы придут в организм туда, где необходимо отдать энергию.

АТФ отдает энергию, и при этом расщепляется до АДФ — аденозиндифосфат. АДФ- это та же молекула АТФ, только без одного остатка фосфорной кислоты. Ди -это значит два. Глюкоза, расщепляясь отдает энергию, которую забирает АДФ и восстанавливает свой фосфорный остаток, превращаясь в АТФ, которая опять готова потратить энергию.Так происходит постоянно.

Этот процесс называется — диссимиляцией .(разрушение).В данном случае для получения энергии надо разрушить молекулу АТФ.

Ассимиляция

Но есть и другой процесс. Можно строить свои собственные вещества с затратой энергии. Этот процесс называется — ассимиляция . Из более мелких создавать более крупные вещества. Производство собственных белков, нуклеиновых кислот, жиров и углеводов.

Например_ вы съели кусок мяса, Мясо- это белок который должен расщепиться до аминокислот, из этих аминокислот будут собраны или синтезированы собственные белки, которые станут вашими мышцами. На это уйдет какая-то часть энергии.

Получение энергии. Что такое гликолиз?

Один из процессов получения энергии для всех живых организмов, это гликолиз. Гликолиз можно встретить в цитоплазме любой нашей клетки. Название «гликолиз» происходит от греч. - сладкий и греч. - растворение.

Гликолиз - ферментативный процесс последовательного расщепления глюкозы в клетках, сопровождающийся синтезом АТФ. Это 13 ферментативных реакций. Гликолиз при аэробных условиях ведёт к образованию пировиноградной кислоты (пирувата) .

Гликолиз в анаэробных условиях ведёт к образованию молочной кислоты (лактата) . Гликолиз является основным путём катаболизма глюкозы в организме животных.

Гликолиз - один из древнейших метаболических процессов, известный почти у всех живых организмов. Предположительно гликолиз появился более 3,5 млрд лет назад у первичных прокариотов . (Прокариоты – это организмы, в клетках которых отсутствует оформленное ядро. Его функции выполняет нуклеотид (то есть «подобный ядру») ; в отличие от ядра, нуклеотид не имеет собственной оболочки).

Анаэробный гликолиз

Анаэробный гликолиз — это способ получить энергию из молекулы глюкозы, не используя при этом кислород. Процесс гликолиза (расщепления) — это процесс окисления глюкозы, при котором из одной молекулы глюкозы образуются две молекулы пировиноградной кислоты.

Молекула глюкозы щепится на две половинки которые можно называть-пируват , это то же самое, что и пировиноградная кислота. Каждая половинка пирувата может восстановить молекулу АТФ. Получается, что одна молекула глюкозы при расщеплении может восстановить две молекулы АТФ.

При длительном беге или при беге в анаэробном режиме через какое-то время становится тяжело дышать, устают мышцы ног, ноги становятся тяжелыми, они как и вы перестают получать достаточное количество кислорода.

Потому, что процесс получения энергии в мышцах заканчивается на гликолизе. Поэтому мышцы начинают болеть и отказываются работать из-за отсутствия энергии. Образуется молочная кислота или лактат. Получается, что чем быстрее бежит атлет, тем быстрее он производит лактат. Уровень лактата в крови тесно связан с интенсивностью выполнения упражнения.

Аэробный гликолиз

Сам по себе гликолиз является полностью анаэробным процессом, то есть не требует для протекания реакций присутствия кислорода. Но согласитесь, что получение при гликолизе двух молекул АТФ, это очень мало.

Поэтому в организме есть альтернативный вариант получения энергии из глюкозы. Но уже с участием кислорода. Это кислородное дыхание. которым каждый из нас обладает, или аэробный гликолиз . Аэробный гликолиз способен быстро восстанавливать запасы АТФ в мышце.

Во время динамических нагрузок, таких как бег, плавание и т.п., происходит аэробный гликолиз. то есть если вы бежите и не задыхаетесь, а спокойно разговариваете с рядом бегущим товарищем, то можно сказать, что вы бежите в аэробном режиме.

Дыхание или аэробный гликолиз происходит в митохондриях под воздействием специальных ферментов и требует затрат кислорода, а соответственно и времени на его доставку.

Окисление происходит в несколько этапов, сначала идет гликолиз, но образовавшиеся в ходе промежуточного этапа этой реакции две молекулы пирувата не преобразуются в молекулы молочной кислоты, а проникают в митохондрии, где окисляются в цикле Кребса до углекислого газа СО2 и воды Н2О и дают энергию для производства еще 36 молекул АТФ.

Митохондрии- это специальные органоиды которые находятся в клетке, поэтому и существует та кое понятие, как клеточное дыхание.Такое дыхание происходит у всех организмов которым нужен кислород, В том числе и нам с вами.

Гликолиз - катаболический путь исключительной важности. Он обеспечивает энергией клеточные реакции, в том числе и синтез белка. Промежуточные продукты гликолиза используются при синтезе жиров. Пируват также может быть использован для синтеза аланина, аспартата и других соединений. Благодаря гликолизу производительность митохондрий и доступность кислорода не ограничивают мощность мышц при кратковременных предельных нагрузках. Аэробное окисление в 20 раз эффективнее анаэробного гликолиза.

Что такое митохондрия?

Митохо́ндрия (от греч. μίτος - нить и χόνδρος - зёрнышко, крупинка) - двумембранный сферический или эллипсоидный органоид диаметром обычно около 1 микрометра.. Энергетическая станция клетки; основная функция - окисление органических соединений и использование освобождающейся при их распаде энергии для генерации электрического потенциала, синтеза АТФ и термогенеза.

Число митохондрий в клетке непостоянно. Их особенно много в клетках, в которых потребность в кислороде велика. В зависимости от того, в каких участках клетки в каждый конкретный момент происходит повышенное потребление энергии, митохондрии в клетке способны перемещаться по цитоплазме в зоны наибольшего энергопотребления.

Функции митохондрий

Одной из основных функций митохондрий является синтез АТФ - универсальной формы химической энергии в любой живой клетке. Посмотрите, на входе две молекулы пирувата, а на выходе огромное количество «много чего». Это «много чего» называется «Цикл Кребса». Кстати, за открытие этого цикла Ганс Кребс получил Нобелевскую премию.

Можно сказать, что это - цикл трикарбоновых кислот. В этом цикле много веществ последовательно превращаются друг в друга. Вобщем, как вы поняли, эта штука очень важная и понятная для биохимиков. Другими словами, это ключевой этап дыхания всех клеток, использующих кислород.

В итоге на выходе мы получаем — углекислый газ, воду и 36 молекул АТФ. Напомню, что гликолиз (без участия кислорода) давал всего две молекулы АТФ на одну молекулу глюкозы. Поэтому, когда наши мышцы начинают работать без кислорода они сильно теряют эффективность. Именно поэтому все тренировки направлены на то, чтобы мышцы как можно дольше могли работать на кислороде.

Строение митохондрии

Митохондрия обладает двумя мембранами: наружной и внутренней. Главная функция наружной мембраны – это отделение органоида от цитоплазмы клетки. Она состоит из билипидного слоя и белков, пронизывающих его, через которые и осуществляется транспорт молекул и ионов, необходимых митохондрии для работы.

В то время как наружная мембрана гладкая, внутренняя образует многочисленные складки – кристы , которые существенно увеличивают ее площадь. Внутренняя мембрана по большей части состоит из белков, среди которых присутствуют ферменты дыхательной цепи, транспортные белки и крупные АТФ — синтетазные комплексы. Именно в этом месте происходит синтез АТФ. Между наружной и внутренней мембраной находится межмембранное пространство с присущими ему ферментами.
Внутреннее пространство митохондрий называется матрикс . Здесь расположены ферментные системы окисления жирных кислот и пирувата, ферменты цикла Кребса, а также наследственный материал митохондрий – ДНК, РНК и белоксинтезирующий аппарат.

Митохондрия — это единственный источник энергии клеток. Расположенные в цитоплазме каждой клетки, митохондрии сравнимы с «батарейками» , которые производят, хранят и распределяют необходимую для клетки энергию.
Человеческие клетки содержат в среднем 1500 митохондрий. Их особенно много в клетках с интенсивным метаболизмом (например, в мускулах или печени) .
Митохондрии подвижны и перемещаются в цитоплазме в зависимости от потребностей клетки. Благодаря наличию собственной ДНК они размножаются и самоуничтожаются независимо от деления клетки.
Клетки не могут функционировать без митохондрий, без них жизнь не возможна.

Экология потребления.Наука и техника:Одна из основных проблем альтернативной энергетики - неравномерность поступления ее из возобновляемых источников. Рассмотрим, каким образом можно накопить виды энергии (хотя для практического использования нам потом нужно будет превратить накопленную энергию либо в электричество, либо в тепло).

Одна из основных проблем альтернативной энергетики - неравномерность поступления ее из возобновляемых источников. Солнце светит только днем и в безоблачную погоду, ветер то дует, а то утихнет. Да и потребности в электроэнергии не постоянны, например, на освещение днем ее требуется меньше, вечером - больше. А людям нравится, когда по ночам города и деревни залиты огнями иллюминаций. Ну, или хотя бы просто улицы освещены. Вот и возникает задача - сохранить полученную энергию на какое-то время, чтобы использовать тогда, когда потребность в ней максимальна, а поступление недостаточно.

Существует 6 основных видов энергии: гравитационная, механическая, тепловая, химическая, электромагнитная и ядерная. К настоящему времени человечество научилось создавать искусственные аккумуляторы для энергии первых пяти видов (ну, если не считать, что имеющиеся запасы ядерного топлива имеют искусственное происхождение). Вот и рассмотрим, каким образом можно накопить и сохранить каждый из этих видов энергии (хотя для практического использования нам потом нужно будет превратить накопленную энергию либо в электричество, либо в тепло).

Накопители гравитационной энергии

В накопителях этого типа на этапе накопления энергии груз поднимается вверх, накапливая потенциальную энергию, а в нужный момент опускается обратно, возвращая эту энергию с пользой. Применение в качестве груза твёрдых тел или жидкостей вносит свои особенности в конструкции каждого типа. Промежуточное положение между ними занимает использование сыпучих веществ (песка, свинцовой дроби, мелких стальных шариков и т.п.).

Гравитационные твердотельные накопители энергии

Суть гравитационных механических накопителей состоит в том, что некий груз поднимается на высоту и в нужное время отпускается, заставляя по ходу вращаться ось генератора. Примером реализации такого способа накопления энергии может служить устройство, предложенное калифорнийской компанией Advanced Rail Energy Storage (ARES). Идея проста: в то время, когда солнечные батареи и ветряки производят достаточно много энергии, специальные тяжелые вагоны при помощи электромоторов загоняются на гору. Ночью и вечером, когда источников энергии недостаточно для обеспечения потребителей, вагоны спускаются вниз, и моторы, работающие как генераторы, возвращают накопленную энергию обратно в сеть.

Практически все механические накопители этого класса имеют очень простую конструкцию, а следовательно высокую надёжность и большой срок службы. Время хранения однажды запасённой энергии практически не ограничено, если только груз и элементы конструкции с течением времени не рассыплются от старости или коррозии.

Энергию, запасённую при поднятии твёрдых тел, можно высвободить за очень короткое время. Ограничение на получаемую с таких устройств мощность накладывает только ускорение свободного падения, определяющее максимальный темп нарастания скорости падающего груза.

К сожалению, удельная энергоёмкость таких устройств невелика и определяется классической формулой E = m · g · h. Таким образом, чтобы запасти энергию для нагрева 1 литра воды от 20°С до 100°С, надо поднять тонну груза как минимум на высоту 35 метров (или 10 тонн на 3.5 метра). Поэтому, когда возникает необходимость запасти энергии побольше, то это сразу приводит к необходимости создания громоздких и, как неизбежное следствие, дорогих сооружений.

Недостатком таких систем является также то, что путь, по которому движется груз, должен быть свободным и достаточно прямым, а также необходимо исключить возможность случайного попадания в эту область вещей, людей и животных.

Гравитационные жидкостные накопители

В отличие от твердотельных грузов, при использовании жидкостей нет необходимости в создании прямых шахт большого сечения на всю высоту подъёма - жидкость отлично перемещается и по изогнутым трубам, сечение которых должно быть лишь достаточным для прохождения по ним максимального расчётного потока. Поэтому верхний и нижний резервуары необязательно должны размещаться друг под другом, а могут быть разнесены на достаточно большое расстояние.

Именно к этому классу относятся гидроаккумулирующие электростанции (ГАЭС).

Существуют и менее масштабные гидравлические накопители гравитационной энергии. Вначале перекачиваем 10 т воды из подземного резервуара (колодца) в емкость на вышке. Затем вода из емкости под действием силы тяжести перетекает обратно в резервуар, вращая турбину с электрогенератором. Срок службы такого накопителя может составлять 20 и более лет. Достоинства: при использовании ветродвигателя последний может непосредственно приводить в движение водяной насос, вода из емкости на вышке может использоваться для других нужд.

К сожалению, гидравлические системы труднее поддерживать в должном техническом состоянии, чем твердотельные, - прежде всего это касается герметичности резервуаров и трубопроводов и исправности запорного и перекачивающего оборудования. И ещё одно важное условие - в моменты накопления и использования энергии рабочее тело (по крайней мере, его достаточно большая часть) должно находиться в жидком агрегатном состоянии, а не пребывать в виде льда или пара. Зато иногда в подобных накопителях возможно получение дополнительной даровой энергии, - скажем, при пополнении верхнего резервуара талыми или дождевыми водами.

Накопители механической энергии

Механическая энергия проявляется при взаимодей­ствии, движении отдельных тел или их частиц. К ней относят кинетическую энергию движения или вращения тела, энер­гию деформации при сгибании, растяжении, закручивании, сжатии упругих тел (пружин).

Гироскопические накопители энергии

В гироскопических накопителях энергия запасается в виде кинетической энергии быстро вращающегося маховика. Удельная энергия, запасаемая на каждый килограмм веса маховика, значительно больше той, что можно запасти в килограмме статического груза, даже подняв его на большую высоту, а последние высокотехнологичные разработки обещают плотность накопленной энергии, сравнимую с запасом химической энергии в единице массы наиболее эффективных видов химического топлива.

Другой огромный плюс маховика - это возможность быстрой отдачи или приёма очень большой мощности, ограниченной лишь пределом прочности материалов в случае механической передачи или «пропускной способностью» электрической, пневматической либо гидравлической передач.

К сожалению, маховики чувствительны к сотрясениям и поворотам в плоскостях, отличных от плоскости вращения, поскольку при этом возникают огромные гироскопические нагрузки, стремящиеся погнуть ось. К тому же время хранения накопленной маховиком энергии относительно невелико и для традиционных конструкций обычно составляет от нескольких секунд до нескольких часов. Далее потери энергии на трение становятся слишком заметными… Впрочем, современные технологии позволяют кардинально увеличить время хранения - вплоть до нескольких месяцев.

Наконец, ещё один неприятный момент - запасённая маховиком энергия прямо зависит от его скорости вращения, поэтому по мере накопления или отдачи энергии скорость вращения всё время меняется. В то же время в нагрузке очень часто требуется стабильная скорость вращения, не превышающая нескольких тысяч оборотов в минуту. По этой причине чисто механические системы передачи энергии на маховик и обратно могут оказаться слишком сложными в изготовлении. Иногда упростить ситуацию может электромеханическая передача с использованием мотор-генератора, размещённого на одном валу с маховиком или связанного с ним жёстким редуктором. Но тогда неизбежны потери энергии на нагрев проводов и обмоток, которые могут быть гораздо выше, чем потери на трение и проскальзывание в хороших вариаторах.

Особенно перспективны так называемые супермаховики, состоящие из витков стальной ленты, проволоки или высокопрочного синтетического волокна. Навивка может быть плотной, а может иметь специально оставленное пустое пространство. В последнем случае по мере раскручивания маховика витки ленты перемещаются от его центра к периферии вращения, изменяя момент инерции маховика, а если лента пружинная, то и запасая часть энергии в энергии упругой деформации пружины. В результате в таких маховиках скорость вращения не так прямо связана с накопленной энергией и гораздо стабильнее, чем в простейших цельнотелых конструкциях, а их энергоёмкость заметно больше.

Помимо большей энергоёмкости, они более безопасны в случае различных аварий, так как в отличии от осколков большого монолитного маховика, по своей энергии и разрушительной силе сравнимых с пушечными ядрами, обломки пружины обладают гораздо меньшей «поражающей способностью» и обычно достаточно эффективно тормозят лопнувший маховик за счёт трения о стенки корпуса. По этой же причине и современные цельнотелые маховики, рассчитанные на работу в режимах, близких к переделу прочности материала, часто изготавливаются не монолитными, а сплетёнными из тросов или волокон, пропитанных связующим веществом.

Современные конструкции с вакуумной камерой вращения и магнитным подвесом супермаховика из кевларового волокна обеспечивают плотность запасённой энергии более 5 МДж/кг, причём могут сохранять кинетическую энергию неделями и месяцами. По оптимистичным оценкам, использование для навивки сверхпрочного «суперкарбонового» волокна позволит увеличить скорость вращения и удельную плотность запасаемой энергии ещё во много раз - до 2-3 ГДж/кг (обещают, что одной раскрутки такого маховика весом 100-150 кг хватит для пробега в миллион километров и более, т.е. на фактически на всё время жизни автомобиля!). Однако стоимость этого волокна пока также во много раз превышает стоимость золота, так что подобные машины ещё не по карману даже арабским шейхам… Подробнее о маховичных накопителях можно почитать в книге Нурбея Гулиа.

Гирорезонансные накопители энергии

Эти накопители представляют собой тот же самый маховик, но выполненный из эластичного материала (например, резины). В результате у него появляются принципиально новые свойства. По мере нарастания оборотов на таком маховике начинают образовываться «выросты»-«лепестки» - сначала он превращается в эллипс, затем в «цветок» с тремя, четырьмя и более «лепестками»… При этом после начала образования «лепестков» скорость вращения маховика уже практически не меняется, а энергия запасается в резонансной волне упругой деформации материала маховика, формирующей эти «лепестки».

Такими конструкциями в конце 1970-х и начале 1980-х годов в Донецке занимался Н.З.Гармаш. Полученные им результаты впечатляют - по его оценкам, при рабочей скорости маховика, составляющей всего 7-8 тысяч об/мин, запасённой энергии было достаточно для того, чтобы автомобиль мог проехать 1500 км против 30 км с обычным маховиком тех же размеров. К сожалению, более свежие сведения об этом типе накопителей неизвестны.

Механические накопители с использованием сил упругости

Этот класс устройств обладает очень большой удельной ёмкостью запасаемой энергии. При необходимости соблюдения небольших габаритов (несколько сантиметров) его энергоёмкость - наибольшая среди механических накопителей. Если требования к массогабаритным характеристикам не столь жёсткие, то большие сверхскоростные маховики превосходят его по энергоёмкости, но они гораздо более чувствительны к внешним факторам и обладают намного меньшим временем хранения энергии.

Пружинные механические накопители

Сжатие и распрямление пружины способно обеспечить очень большой расход и поступление энергии в единицу времени - пожалуй, наибольшую механическую мощность среди всех типов накопителей энергии. Как и в маховиках, она ограничена лишь пределом прочноcти материалов, но пружины обычно реализуют рабочее поступательное движение непосредственно, а в маховиках без довольно сложной передачи не обойтись (не случайно в пневматическом оружии используются либо механические боевые пружины, либо баллончики с газом, которые по своей сути являются предварительно заряженными пневматическими пружинами; до появления огнестрельного оружия для боя на дистанции применялось также именно пружинное оружие - луки и арбалеты, ещё задолго до новой эры полностью вытеснившие в профессиональных войсках пращу с её кинетическим накоплением энергии).

Срок хранения накопленной энергии в сжатой пружине может составлять многие годы. Однако следует учитывать, что под действием постоянной деформации любой материал с течением времени накапливает усталость, а кристаллическая решётка металла пружины потихоньку изменяется, причём чем больше внутренние напряжения и чем выше окружающая температура, тем скорее и в большей степени это произойдёт. Поэтому через несколько десятилетий сжатая пружина, не изменившись внешне, может оказаться «разряженной» полностью или частично. Тем не менее, качественные стальные пружины, если они не подвергаются перегреву или переохлаждению, способны работать веками без видимой потери ёмкости. Например, старинные настенные механические часы с одного полного завода по-прежнему идут две недели - как и более полувека назад, когда они были изготовлены.

При необходимости постепенной равномерной «зарядки» и «разрядки» пружины обеспечивающий это механизм может оказаться весьма сложным и капризным (загляните в те же механические часы - по сути, множество шестерёнок и других деталей служат именно этой цели). Упростить ситуацию может электромеханическая передача, но она обычно накладывает существенные ограничения на мгновенную мощность такого устройства, а при работе с малыми мощностями (несколько сот ватт и менее) её КПД слишком низок. Отдельной задачей является накопление максимальной энергии в минимальном объёме, так как при этом возникают механические напряжения, близкие к пределу прочности используемых материалов, что требует особо тщательных расчётов и безупречного качества изготовления.

Говоря здесь о пружинах, нужно иметь в виду не только металлические, но и другие упругие цельнотелые элементы. Самые распространённые среди них - это резиновые жгуты. Кстати, по энергии, запасаемой на единицу массы, резина превосходит сталь в десятки раз, зато и служит она примерно во столько же раз меньше, причём, в отличии от стали, теряет свои свойства уже через несколько лет даже без активного использования и при идеальных внешних условиях - в силу относительно быстрого химического старения и деградации материала.

Газовые механические накопители

В этом классе устройств энергия накапливается за счёт упругости сжатого газа. При избытке энергии компрессор закачивает газ в баллон. Когда требуется использовать запасённую энергию, сжатый газ подаётся в турбину, непосредственно выполняющую необходимую механическую работу или вращающую электрогенератор. Вместо турбины можно использовать поршневой двигатель, который более эффективен при небольших мощностях (кстати, существуют и обратимые поршневые двигатели-компрессоры).

Практически каждый современный промышленный компрессор оснащён подобным аккумулятором - ресивером. Правда, давление там редко превышает 10 атм, и потому запас энергии в таком ресивере не очень большой, но и это обычно позволяет в несколько раз увеличить ресурс установки и сэкономить энергию.

Газ, сжатый до давления в десятки и сотни атмосфер, может обеспечить достаточно высокую удельную плотность запасённой энергии в течение практически неограниченного времени (месяцы, годы, а при высоком качестве ресивера и запорной арматуры - десятки лет, - недаром пневматическое оружие, использующее баллончики со сжатым газом, получило такое широкое распространение). Однако входящие в состав установки компрессор с турбиной или поршневой двигатель, - устройства достаточно сложные, капризные и имеющие весьма ограниченный ресурс.

Перспективной технологией создания запасов энергии является сжатие воздуха за счет доступной энергии в то время, когда непосредственная потребность в последней отсутствует. Сжатый воздух охлаждается и хранится при давлении 60-70 атмосфер. При необходимости расходовать запасенную энергию, воздух извлекается из накопителя, нагревается, а затем поступает в специальную газовую турбину, где энергия сжатого и нагретого воздуха вращает ступени турбины, вал которой соединен с электрическим генератором, выдающим электроэнергию в энергосистему.

Для хранения сжатого воздуха предлагается, например, использовать подходящие горные выработки или специально создаваемые подземные емкости в соляных породах. Концепция не нова, хранение сжатого воздуха в подземной пещере было запатентовано еще в 1948 году, а первый завод с накопителем энергии сжатого воздуха (CAES - compressed air energy storage) с мощностью 290 МВт работает на электростанции Huntorf в Германии с 1978 года. На этапе сжатия воздуха большое количество энергии теряется в виде тепла. Эта утерянная энергия должна быть компенсирована сжатому воздуху до этапа расширения в газовой турбине, для этого и используется углеводородное топливо, с помощью которого повышают температуру воздуха. Это значит, что установки имеют далеко не стопроцентный КПД.

Существует перспективное направление для повышения эффективности CAES. Оно заключается в удержании и сохранении тепла, выделяющегося при работе компрессора на этапе сжатия и охлаждения воздуха, с последующим его повторным использованием при обратном нагреве холодного воздуха (т.н. рекуперация). Тем не менее, этот вариант CAES имеет существенные технические сложности, особенно в направлении создания системы длительного сохранения тепла. В случае решения этих проблем, AA-CAES (Advanced Adiabatic-CAES) может проложить путь для крупномасштабных систем хранения энергии, проблема была поднята исследователями по всему миру.

Участники канадского стартапа Hydrostor предложили другое необычное решение - закачивать энергию в подводные пузыри.

Накопление тепловой энергии

В наших климатических условиях очень существенная (зачастую - основная) часть потребляемой энергии расходуется на обогрев. Поэтому было бы очень удобно аккумулировать в накопителе непосредственно тепло и затем получать его обратно. К сожалению, в большинстве случаев плотность запасённой энергии очень мала, а сроки её сохранения весьма ограничены.

Существуют тепловые аккумуляторы с твёрдым либо плавящимся теплоаккумулирующим материалом; жидкостные; паровые; термохимические; с электронагревательным элементом. Тепловые аккумуляторы могут подключаться в систему с твердотопливным котлом, в гелиосистему или комбинированную систему.

Накопление энергии за счёт теплоёмкости

В накопителях этого типа аккумулирование тепла осуществляется за счет теплоемкости вещества, служащего рабочим телом. Классическим примером теплового аккумулятора может служить русская печь. Ее протапливали один раз в день и она потом обогревала дом в течение суток. В наше время под тепловым аккумулятором чаще всего подразумевают ёмкости для хранения горячей воды, обшитые материалом с высокими теплоизоляционными свойствами.

Существуют теплоаккумуляторы и на основе твердых теплоносителей, например, в керамических кирпичах.

Различные вещества обладают разной теплоёмкостью. У большинства она находится в пределах от 0.1 до 2 кДж/(кг·К). Аномально большой теплоёмкостью обладает вода - её теплоёмкость в жидкой фазе составляет примерно 4.2 кДж/(кг·К). Более высокую теплоёмкость имеет только весьма экзотический литий - 4.4 кДж/(кг·К).

Однако помимо удельной теплоёмкости (по массе) надо учитывать и объёмную теплоёмкость, позволяющую определить, сколько тепла нужно, чтобы изменить на одну и ту же величину температуру одного и того же объёма различных веществ. Она вычисляется из обычной удельной (массовой) теплоёмкости умножением её на удельную плотность соответствующего вещества. На объёмную теплоёмкость следует ориентироваться тогда, когда важнее объём теплоаккумулятора, чем его вес.

Например, удельная теплоёмкость стали всего 0.46 кДж/(кг·К), но плотность 7800 кг/куб.м, а, скажем, у полипропилена - 1.9 кДж/(кг·К) - в 4 с лишним раза больше, однако плотность его составляет всего 900 кг/куб.м. Поэтому при одинаковом объёме сталь сможет запасти в 2.1 раза больше тепла, чем полипропилен, хотя и будет тяжелее почти в 9 раз. Впрочем, благодаря аномально большой теплоёмкости воды ни один материал не может превзойти её и по объёмной теплоёмкости. Однако объёмная теплоемкость железа и его сплавов (сталь, чугун) отличается от воды менее, чем на 20% - в одном кубическом метре они могут запасти более 3.5 МДж тепла на каждый градус изменения температуры, чуть-чуть меньше объёмная теплоёмкость у меди - 3.48 МДж/(куб.м·К). Теплоёмкость воздуха в нормальных условиях составляет примерно 1 кДж/кг, или 1.3 кДж/куб.м, поэтому чтобы нагреть кубометр воздуха на 1°, достаточно охладить на тот же градус чуть менее 1/3 литра воды (естественно, более горячей, чем воздух).

В силу простоты устройства (что может быть проще неподвижного сплошного куска твёрдого вещества либо закрытого резервуара с жидким теплоносителем?) подобные накопители энергии имеют практически неограниченное число циклов накопления-отдачи энергии и очень длительный срок службы - для жидких теплоносителей до высыхания жидкости либо до повреждения резервуара от коррозии или других причин, для твёрдотельных отсутствуют и эти ограничения. Но вот время хранения весьма ограничено и, как правило, составляет от нескольких часов до нескольких суток - на больший срок обычная теплоизоляция удержать тепло уже не способна, да и удельная плотность запасаемой энергии невелика.

Наконец, следует подчеркнуть ещё одно обстоятельство, - для эффективной работы важна не только теплоёмкость, но и теплопроводность вещества теплоаккумулятора. При высокой теплопроводности даже на достаточно быстрые изменения наружных условий теплоаккумулятор отреагирует всей своей массой, а следовательно и всей запасённой энергией - то есть максимально эффективно.

В случае же плохой теплопроводности среагировать успеет только поверхностная часть теплоаккумулятора, а до глубинных слоёв кратковременные изменения внешних условий просто не успеют дойти, и существенная часть вещества такого теплоаккумулятора будет фактически исключена из работы.

Полипропилен, упомянутый в рассмотренном чуть выше примере, имеет теплопроводность почти в 200 раз меньше, чем сталь, и потому, невзирая на достаточно большую удельную теплоёмкость, эффективным теплоаккумулятором быть не может. Впрочем, технически проблема легко решается организацией специальных каналов для циркуляции теплоносителя внутри теплоаккумулятора, но очевидно, что такое решение существенно усложняет конструкцию, снижает её надёжность и энергоёмкость и непременно будет требовать периодического техобслуживания, которое вряд ли нужно монолитному куску вещества.

Как это не покажется странным, иногда нужно бывает накапливать и хранить не тепло, а холод. В США уже более десяти лет работают компании, которые предлагают «аккумуляторы» на основе льда для установки в кондиционеры воздуха. В ночное время, когда электроэнергии в избытке и она продаётся по сниженным тарифам, кондиционер замораживает воду, то есть переходит в режим холодильника. В дневное время он потребляет в несколько раз меньше энергии, работая как вентилятор. Энергопрожорливый компрессор на это время отключается. .

Накопление энергии при смене фазового состояния вещества

Если внимательно посмотреть на тепловые параметры различных веществ, то можно увидеть, что при смене агрегатного состояния (плавлении-твердении, испарении-конденсации) происходит значительное поглощение или выделение энергии. Для большинства веществ тепловой энергии таких превращений достаточно, чтобы изменить температуру того же количества этого же вещества на многие десятки, а то и сотни градусов в тех диапазонах температур, где его агрегатное состояние не меняется. А ведь, как известно, пока агрегатное состояние всего объёма вещества не станет одним и тем же, его температура практически постоянна! Поэтому было бы очень заманчиво накапливать энергию за счёт смены агрегатного состояния - энергии накапливается много, а температура изменяется мало, так что в результате не потребуется решать проблемы, связанные с нагревом до высоких температур, и в то же время можно получить хорошую ёмкость такого теплоаккумулятора.

Плавление и кристаллизация

К сожалению, в настоящее время практически нет дешёвых, безопасных и устойчивых к разложению веществ с большой энергией фазового перехода, температура плавления которых лежала бы в наиболее актуальном диапазоне - примерно от +20°С до +50°С (максимум +70°С - это ещё относительно безопасная и легко достижимая температура). Как правило, в этом диапазоне температур плавятся сложные органические соединения, отнюдь не полезные для здоровья и зачастую быстро окисляющиеся на воздухе.

Пожалуй, наиболее подходящими веществами являются парафины, температура плавления большинства которых в зависимости от сорта лежит в диапазоне 40..65°С (правда, существуют и «жидкие» парафины с температурой плавления 27°С и менее, а также родственный парафинам природный озокерит, температура плавления которого лежит в пределах 58..100°С). И парафины, и озокерит вполне безопасны и используются в том числе и в медицинских целях для непосредственного прогрева больных мест на теле.

Однако при хорошей теплоёмкости теплопроводность их весьма мала - мала настолько, что приложенный к телу парафин или озокерит, нагретый до 50-60°С, ощущается лишь приятно горячим, но не обжигающим, как это было бы с водой, нагретой до той же температуры, - для медицины это хорошо, но для теплоаккумулятора это безусловный минус. Кроме того, эти вещества не так уж дёшевы, скажем, оптовая цена на озокерит в сентябре 2009 г. составляла порядка 200 рублей за килограмм, а килограмм парафина стоил от 25 рублей (технический) до 50 и выше (высокоочищенный пищевой, т.е. пригодный для использования при упаковке продуктов). Это оптовые цены для партий в несколько тонн, в розницу всё дороже как минимум раза в полтора.

В результате экономическая эффективность парафинового теплоаккумулятора оказывается под большим вопросом, - ведь килограмм-другой парафина или озокерита годится лишь для медицинского прогрева заломившей поясницы в течении пары десятков минут, а для обеспечения стабильной температуры более-менее просторного жилища в течении хотя бы суток масса парафинового теплоаккумулятора должна измеряться тоннами, так что его стоимость сразу приближается к стоимости легкового автомобиля (правда, нижнего ценового сегмента)!

Да и температура фазового перехода в идеале всё же должна точно соответствовать комфортному диапазону (20..25°С) - иначе всё равно придётся организовывать какую-то систему регулирования теплообмена. Тем не менее, температура плавления в районе 50..54°С, характерная для высокоочищенных парафинов, в сочетании с высокой теплотой фазового перехода (немногим более 200 кДж/кг) очень хорошо подходит для теплоаккумкулятора, рассчитанного на обеспечение горячего водоснабжения и водяного отопления, проблема лишь в невысокой теплопроводности и высокой цене парафина.

Зато в случае форс-мажора сам парафин можно использовать в качестве топлива с хорошей теплотворной способностью (хотя сделать это не так просто - в отличии от бензина или керосина, жидкий и тем более твёрдый парафин на воздухе не горит, обязательно нужен фитиль или другое устройство для подачи в зону горения не самого парафина, а только его паров)!

Примером накопителя тепловой энергии на основе эффекта плавления и кристаллизации может служить система хранения тепловой энергии TESS на основе кремния, которую разработала австралийская компания Latent Heat Storage.

Испарение и конденсация

Теплота испарения-конденсации, как правило, в несколько раз превышает теплоту плавления-кристаллизации. И вроде бы есть не так уж мало веществ, испаряющихся в нужном диапазоне температур. Помимо откровенно ядовитых сероуглерода, ацетона, этилового эфира и т.п., есть и этиловый спирт (его относительная безопасность ежедневно доказывается на личном примере миллионами алкоголиков по всему миру!). В нормальных условиях спирт кипит при 78°С, а его теплота испарения в 2.5 раза больше теплоты плавления воды (льда) и эквивалентна нагреву того же количества жидкой воды на 200°.

Однако в отличии от плавления, когда изменения объёма вещества редко превышают несколько процентов, при испарении пар занимает весь предоставленный ему объём. И если этот объём будет неограничен, то пар улетучится, безвозвратно унося с собой всю накопленную энергию. В замкнутом же объёме сразу начнёт расти давление, препятствуя испарению новых порций рабочего тела, как это имеет место в самой обычной скороварке, поэтому смену агрегатного состояния испытывает лишь небольшой процент рабочего вещества, остальное же продолжает нагреваться, находясь в жидкой фазе. Здесь открывается большое поле деятельности для изобретателей - создание эффективного теплоаккумулятора на основе испарения и конденсации с герметичным переменным рабочим объёмом.

Фазовые переходы второго рода

Помимо фазовых переходов, связанных с изменением агрегатного состояния, некоторые вещества и в рамках одного агрегатного состояния могут иметь несколько различных фазовых состояний. Смена таких фазовых состояний, как правило, также сопровождается заметным выделением или поглощением энергии, хотя обычно гораздо менее значительным, чем при изменении агрегатного состояния вещества. Кроме того, во многих случаях при подобных изменениях в отличии от смены агрегатного состояния имеет место температурный гистерезис - температуры прямого и обратного фазового перехода могут существенно различаться, иногда на десятки и даже на сотни градусов.

Электрические накопители энергии

Электричество - наиболее удобная и универсальная форма энергии в современном мире. Не удивительно, что именно накопители электрической энергии развиваются наиболее быстро. К сожалению, в большинстве случаев удельная ёмкость недорогих устройств невелика, а устройства с высокой удельной ёмкостью пока слишком дороги для хранения больших запасов энергии при массовом применении и весьма недолговечны.

Конденсаторы

Самые массовые «электрические» накопители энергии - это обычные радиотехнические конденсаторы. Они обладают огромной скоростью накопления и отдачи энергии - как правило, от нескольких тысяч до многих миллиардов полных циклов в секунду, и способны так работать в широком диапазоне температур многие годы, а то и десятилетия. Объединяя несколько конденсаторов параллельно, легко можно увеличить их суммарную ёмкость до нужной величины.

Конденсаторы можно разделить на два больших класса - неполярные (как правило, «сухие», т.е. не содержащие жидкого электролита) и полярные (обычно электролитические). Использование жидкого электролита обеспечивает существенно бóльшую удельную ёмкость, но почти всегда требует соблюдения полярности при подключении. Кроме того, электролитические конденсаторы часто более чувствительные к внешним условиям, прежде всего к температуре и имеют меньший срок службы (с течением времени электролит улетучивается и высыхает).

Однако у конденсаторов есть два основных недостатка. Во-первых, это весьма малая удельная плотность запасаемой энергии и потому небольшая (относительно других видов накопителей) ёмкость. Во-вторых, это малое время хранения, которое обычно исчисляется минутами и секундами и редко превышает несколько часов, а в некоторых случаях составляет лишь малые доли секунды. В результате область применения конденсаторов ограничивается различными электронными схемами и кратковременным накоплением, достаточным для выпрямления, коррекции и фильтрации тока в силовой электротехнике - на большее их пока не хватает.

Ионисторы

Ионисторы, которые иногда называют «суперконденсаторами», можно рассматривать как своего рода промежуточное звено между электролитическими конденсаторами и электрохимическими аккумуляторами. От первых они унаследовали практически неограниченное количество циклов заряда-разряда, а от вторых - относительно невысокие токи зарядки и разрядки (цикл полной зарядки-разрядки может длиться секунду, а то и намного дольше). Ёмкость их также находится в диапазоне между наиболее ёмкими конденсаторами и небольшими аккумуляторами - обычно запас энергии составляет от единиц до нескольких сотен джоулей.

Дополнительно следует отметить достаточно высокую чувствительность ионисторов к температуре и ограниченное время хранения заряда - от нескольких часов до нескольких недель максимум.

Электрохимические аккумуляторы

Электрохимические аккумуляторы были изобретены ещё на заре развития электротехники, и сейчас их можно встретить повсюду - от мобильного телефона до самолётов и кораблей. Вообще говоря, они работают на основе некоторых химических реакций и поэтому их можно было бы отнести к следующему разделу нашей статьи -«Химические накопители энергии». Но поскольку этот момент обычно не подчеркивается, а обращается внимание на то, что аккумуляторы накапливают электричество, рассмотрим их здесь.

Как правило, при необходимости запасать достаточно большую энергию - от нескольких сотен килоджоулей и более - используются свинцово-кислотные аккумуляторы (пример - любой автомобиль). Однако они имеют немалые габариты и, главное, вес. Если же требуется малый вес и мобильность устройства, то используются более современные типы аккумуляторов - никель-кадмиевые, металл-гидридные, литий-ионные, полимер-ионные и др. Они имеют гораздо более высокую удельную ёмкость, однако и удельная стоимость хранения энергии у них заметно выше, поэтому их применение обычно ограничивается относительно небольшими и экономичными устройствами, такими как мобильные телефоны, фото- и видеокамеры, ноутбуки и т.п.

В последнее время на гибридных автомобилях и электромобилях начали применяться мощные литий-ионные аккумуляторы. Помимо меньшего веса и большей удельной ёмкости, в отличие от свинцово-кислотных они позволяют практически полностью использовать свою номинальную ёмкость, считаются более надёжными и имеющими бóльший срок службы, а их энергетическая эффективность в полном цикле превышает 90%, в то время как энергетическая эффективность свинцовых аккумуляторов при заряде последних 20% ёмкости может падать до 50%.

По режиму использования электрохимические аккумуляторы (прежде всего мощные) также подразделяются на два больших класса - так называемые тяговые и стартовые. Обычно стартовый аккумулятор достаточно успешно может работать в качестве тягового (главное - контролировать степень разряда и не доводить его до такой глубины, которая допустима для тяговых аккумуляторов), а вот при обратном применении слишком большой ток нагрузки может очень быстро вывести тяговый аккумулятор из строя.

К недостаткам электрохимических аккумуляторов можно отнести весьма ограниченное число циклов заряда-разряда (в большинстве случаев от 250 до 2000, а при несоблюдении рекомендаций производителей - гораздо меньше), и даже при отсутствии активной эксплуатации большинство типов аккумуляторов через несколько лет деградируют, утрачивая свои потребительские свойства.

При этом срок службы многих видов аккумуляторов идёт не с начала их эксплуатации, а с момента изготовления. Кроме того, для электрохимических аккумуляторов характерны чувствительность к температуре, длительное время заряда, иногда в десятки раз превышающее время разряда, и необходимость соблюдения методики использования (недопущение глубокого разряда для свинцовых аккумуляторов и, наоборот, соблюдение полного цикла заряда-разряда для металл-гидридных и многих других типов аккумуляторов). Время хранения заряда также довольно ограничено - обычно от недели до года. У старых аккумуляторов уменьшается не только ёмкость, но и время хранения, причём и то, и другое может сократиться во много раз.

Разработки с целью создания новых типов электрических аккумуляторов и усовершенствования существующих устройств не прекращаются.

Химические накопители энергии

Химическая энергия - это энергия, «запасенная» в атомах веществ, которая высвобождается или поглощается при хими­ческих реакциях между веществами. Химическая энергия либо выделяется в виде тепловой при проведении экзотермических реакций (например, горении топлива), либо преобразуется в электрическую в гальваничес­ких элементах и аккумуляторах. Эти источники энергии ха­рактеризуются высоким КПД (до 98 %), но низкой емкостью.

Химические накопители энергии позволяют получать энергию как в том виде, из которого она запасалась, так и в любом другом. Можно выделить «топливные» и «безтопливные» разновидности. В отличии от низкотемпературных термохимических накопителей (о них чуть позже), которые могут запасти энергию, просто будучи помещёнными в достаточно тёплое место, здесь не обойтись без специальных технологий и высокотехнологичного оборудования, иногда весьма громоздкого. В частности, если в случае низкотемпературных термохимических реакций смесь реагентов обычно не разделяется и всегда находится в одной и той же ёмкости, реагенты для высокотемпературных реакций хранятся отдельно друг от друга и соединяются лишь тогда, когда нужно получить энергию.

Накопление энергии наработкой топлива

На этапе накопления энергии происходит химическая реакция, в результате которой восстанавливается топливо, например, из воды выделяется водород - прямым электролизом, в электрохимических ячейках с использованием катализатора или с помощью термического разложения, скажем, электрической дугой или сильно сконцентрированным солнечным светом. «Освободившийся» окислитель может быть собран отдельно (для кислорода это необходимо в условиях замкнутого изолированного объекта - под водой или в космосе) либо за ненадобностью «выброшен», поскольку в момент использования топлива этого окислителя будет вполне достаточно в окружающей среде и нет необходимости тратить место и средства на его организованное хранение.

На этапе извлечения энергии наработанное топливо окисляется с выделением энергии непосредственно в нужной форме, независимо от того, каким способом было получено это топливо. Например, водород может дать сразу тепло (при сжигании в горелке), механическую энергию (при подаче его в качестве топлива в двигатель внутреннего сгорания или турбину) либо электричество (при окислении в топливной ячейке). Как правило, такие реакции окисления требуют дополнительной инициации (поджига), что весьма удобно для управления процессом извлечения энергии.

Этот способ очень привлекателен независимостью этапов накопления энергии («зарядки») и её использования («разрядки»), высокой удельной ёмкостью запасаемой в топливе энергии (десятки мегаджоулей на каждый килограмм топлива) и возможностью длительного хранения (при обеспечении должной герметичности ёмкостей - многие годы). Однако его широкому распространению препятствует неполная отработанность и дороговизна технологии, высокая пожаро- и взрывоопасность на всех стадиях работы с таким топливом, и, как следствие, необходимость высокой квалификации персонала при обслуживании и эксплуатации этих систем. Несмотря на эти недостатки в мире разрабатываются различные установки, использующие водород в качестве резервного источника энергии.

Накопление энергии с помощью термохимических реакций

Давно и широко известна большая группа химических реакций, которые в закрытом сосуде при нагревании идут в одну сторону с поглощением энергии, а при охлаждении - в обратную с выделением энергии. Такие реакции часто называют термохимическими. Энергетическая эффективность таких реакций, как правило, меньше, чем при смене агрегатного состояния вещества, однако тоже весьма заметна.

Подобные термохимические реакции можно рассматривать как своего рода смену фазового состояния смеси реагентов, и проблемы здесь возникают примерно те же - трудно найти дешёвую, безопасную и эффективную смесь веществ, успешно действующую подобным образом в диапазоне температур от +20°С до +70°С. Впрочем, один подобный состав известен уже давно - это глауберова соль.

Мирабилит (он же глауберова соль, он же десятиводный сульфат натрия Na2SO4 · 10H2O) получают в результате элементарных химических реакций (например, при добавлении поваренной соли в серную кислоту) или добывают в «готовом виде» как полезное ископаемое.

С точки зрения аккумуляции тепла наиболее интересная особенность мирабилита заключается в том, что при повышении температуры выше 32°С связанная вода начинает освобождаться, и внешне это выглядит как «плавление» кристаллов, которые растворяются в выделившейся из них же воде. При снижении температуры до 32°С свободная вода вновь связывается в структуру кристаллогидрата - происходит «кристаллизация». Но самое главное - теплота этой реакции гидратации-дегидратации весьма велика и составляет 251 кДж/кг, что заметно выше теплоты «честного» плавления-кристаллизации парафинов, хотя и на треть меньше, чем теплота плавления льда (воды).

Таким образом, теплоаккумулятор на основе насыщенного раствора мирабилита (насыщенного именно при температуре выше 32°С) может эффективно поддерживать температуру на уровне 32°С с большим ресурсом накопления или отдачи энергии. Конечно, для полноценного горячего водоснабжения эта температура слишком низка (душ с такой температурой в лучшем случае воспринимается как «весьма прохладный»), но вот для подогрева воздуха такой температуры может оказаться вполне достаточно.

Безтопливное химическое накопление энергии

В данном случае на этапе «зарядки» из одних химических веществ образуются другие, и в ходе этого процесса в образующихся новых химических связях запасается энергия (скажем, гашёная известь при помощи нагрева переводится в негашёное состояние).

При «разрядке» происходит обратная реакция, сопровождаемая выделением ранее запасённой энергии (обычно в виде тепла, иногда дополнительно в виде газа, который можно подать в турбину) - в частности, именно это имеет место при «гашении» извести водой. В отличие от топливных методов, для начала реакции обычно достаточно просто соединить реагенты друг с другом - дополнительная инициация процесса (поджиг) не требуется.

По сути, это разновидность термохимической реакции, однако в отличии от низкотемпературных реакций, описанных при рассмотрении тепловых накопителей энергии и не требующих каких-то особых условий, здесь речь идёт о температурах в многие сотни, а то и тысячи градусов. В результате количество энергии, запасаемой в каждом килограмме рабочего вещества, существенно возрастает, но и оборудование во много раз сложнее, объёмнее и дороже, чем пустые пластиковые бутылки или простой бак для реагентов.

Необходимость расхода дополнительного вещества - скажем, воды для гашения извести - не является существенным недостатком (при необходимости можно собрать воду, выделяющуюся при переходе извести в негашёное состояние). А вот особые условия хранения этой самой негашёной извести, нарушение которых чревато не только химическими ожогами, но и взрывом, переводят этот и ему подобные способы в разряд тех, которые вряд ли выйдут в широкую жизнь.

Другие типы накопителей энергии

Помимо описанных выше, есть и другие типы накопителей энергии. Однако в настоящее время они весьма ограничены по плотности запасаемой энергии и времени её хранения при высокой удельной стоимости. Поэтому пока они больше применяются для развлечения, а их эксплуатация в сколько-нибудь серьёзных целях не рассматривается. Примером являются фосфорецирующие краски, запасающие энергию от яркого источника света и затем светящиеся в течение нескольких секунд, а то и долгих минут. Их современные модификации уже давно не содержат ядовитого фосфора и вполне безопасны даже для использования в детских игрушках.

Суперпроводящие накопители магнитной энергии хранят её в поле большой магнитной катушки с постоянным током. Она может быть преобразована в переменный электрический ток по мере необходимости. Низкотемпературные накопители охлаждаются жидким гелием и доступны для промышленных предприятий. Высокотемпературные накопители, охлаждаемые жидким водородом, всё ещё находятся в стадии разработки и могут стать доступны в будущем.

Суперпроводящие накопители магнитной энергии имеют значительные размеры и обычно используются в течение коротких периодов времени, например, во время переключений. опубликовано


© 2024
colybel.ru - О груди. Заболевания груди, пластическая хирургия, увеличение груди