03.03.2020

Полная механическая энергия частицы. Как связаны работа силы и полная механическая энергия частицы? Кинематика поступательного движения


Закон сохранения энергии. Механическая энергия частицы в силовом поле Сумму кинетической и потенциальной энергии называют полной механической энергией частицы в поле: 5. Консервативная система физическая система работа неконсервативных сил которой равна нулю и для которой имеет место закон сохранения механической энергии то есть сумма кинетической энергии и потенциальной энергии системы постоянна. вызывающих убывание механической энергии и переход её в другие формы энергии например в тепло консервативная система...

13.Полная механическая энергия частицы. Консервативные и диссипативные системы. Закон сохранения энергии.

Механическая энергия частицы в силовом поле

Сумму кинетической и потенциальной энергии - называют полной механической энергией частицы в поле :

(5.30)

Заметим, что полная механическая энергия Е, как и потенциальная, определяется с точностью до прибавления несущественной произвольной постоянной.

Консервативная система — физическая система, работа неконсервативных сил которой равна нулю и для которой имеет место закон сохранения механической энергии, то есть сумма кинетической энергии и потенциальной энергии системы постоянна.

Примером консервативной системы служит солнечная система. В земных условиях, где неизбежно наличие сил сопротивления (трения, сопротивления среды и др.), вызывающих убывание механической энергии и переход её в другие формы энергии, например в тепло, консервативная система осуществляются лишь грубо приближённо. Например, приближённо можно считать консервативной системой колеблющийся маятник, если пренебречь трением в оси подвеса и сопротивлением воздуха.

Диссипативная система — это открытая система , которая оперирует вдали от термодинамического равновесия . Иными словами, это устойчивое состояние, возникающее в неравновесной среде при условии диссипации (рассеивания) энергии, которая поступает извне. Диссипативная система иногда называется ещё стационарной открытой системой или неравновесной открытой системой .

Диссипативная система характеризуется спонтанным появлением сложной, зачастую хаотичной структуры. Отличительная особенность таких систем — несохранение объёма в фазовом пространстве, то есть не выполнение Теоремы Лиувилля.

Простым примером такой системы являются ячейки Бенара. В качестве более сложных примеров называются лазеры, реакция Белоусова — Жаботинского и сама биологическая жизнь.

Термин «диссипативная структура» введен Ильёй Пригожиным.

Закон сохранения энергии — фундаментальный закон природы, установленный эмпирически и заключающийся в том, что энергия изолированной (замкнутой) системы сохраняется во времени. Другими словами, энергия не может возникнуть из ничего и не может исчезнуть в никуда, она может только переходить из одной формы в другую. Закон сохранения энергии встречается в различных разделах физики и проявляется в сохранении различных видов энергии. Например, в термодинамике закон сохранения энергии называется первым началом термодинамики.

Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то правильнее называть его не законом , а принципом сохранения энергии .

Закон сохранения энергии является универсальным. Для каждой конкретной замкнутой системы, вне зависимости от её природы можно определить некую величину, называемую энергией, которая будет сохраняться во времени. При этом выполнение этого закона сохранения в каждой конкретно взятой системе обосновывается подчинением этой системы своим специфическим законам динамики, вообще говоря, различающихся для разных систем.

Согласно теореме Нётер, закон сохранения энергии является следствием однородности времени.

W=W k +W п =const


А также другие работы, которые могут Вас заинтересовать

25500. Показательная форма комплексного чис 41.13 KB
Im Геометрическая интерпретация комплексного числа y φ x Re Комплексное число изображается точкой с координатами в декартовой системе координат XOY или вектором с координатами x и y. Аргументом комплексного числа z называется угол φ образованный положительным направлением оси OX и лучом OZ Обозначение: Модулем комплексного числа обозначение: или r называется длина радиусвектора. Тригонометрической формой комплексного числа.
25501. Операторный метод решения задачи Коши. Преобразование Лапласа и его свойства 99.94 KB
Преобразованием Лапласа функции вещественной переменной называется функция комплексной переменной такая что: Правая часть этого выражения называется интегралом Лапласа. Обратное преобразование Лапласа Обратным преобразованием Лапласа функции комплексного переменного называется функция вещественной переменной такая что: где некоторое вещественное число см. Двустороннее преобразование Лапласа Двустороннее преобразование Лапласа обобщение на случай задач в которых для функции участвуют значения.
25502. Уравнение колебаний 28.54 KB
Скорость движения точки v(t) найдем, вычислив производную: Тогда максимальное значение модуля скорости равно, а минимальное...
25505. Конфликты в семье 13.25 KB
Конфликт столкновение противоположно направленных целей интересов позиций мнений и тд субъектов взаимодействия По Петровской Основания анализа конфликта: 1 структура конфликта Объект субъект конфликтная ситуация инцидент = конликт 2 динамика конфликта этапы 1. инцидент развитие конфликта 4. завершение конфликта 5. послеконфликтная ситуация 3 функции конфликта: конструктивная деструктивная 4 типология конфликтов По степени выраженности: открытые и скрытые По динамика: актуальные прогрессирующие привычные По последствиям:...
25506. Методы воспитания детей в семье 12.17 KB
Они имеют свою специфику: влияние на ребенка индивидуальное основанное на конкретных поступках и приспособлениях к личности; выбор методов зависит от педагогической культурыродителей: понимания целей воспитания родительской роли представлений о ценностях стиля отношений в семье и т. Поэтому методы семейного воспитания несут на себе яркий отпечаток личности родителей и неотделимы от них. Сколько родителей столько разновидностей методов.
25507. Многодетная семья 17.28 KB
Воспитательный потенциал многодетной семьи имеет свои положительные и отрицательные характеристики а процесс социализации детей свои трудности проблемы.С одной стороны здесь как правило воспитываются разумные потребности и умение считаться с нуждами других; ни у кого из детей нет привилегированного положения а значит нет почвы для формирования эгоизма асоциальных черт; больше возможностей для общения заботы о младших усвоения нравственных и социальных норм и правил общежития; успешнее могут формироваться такие нравственные...
25508. Основные направления комплексной поддержки молодой семьи 15.66 KB
В обоих случаях является повышение качества жизни семьи. В РФ не существует единого ведомства которая занималась бы исключительно проблемами молодой семьи.; Совершенствование налоговой политики в отношении членов молодых семей занятых трудовой деятельностью пктем установления налоговых льгот и соц выплат достаточных для удовлетворения основных потребностей молодой семьи; Обеспечение гос контроля за соблюдение законодательства в РФ в части защиты прав и интересов молодой семьи работающих члденов семьи не зависимо от формы собственности...

Работа силы по перемещению частицы идет на увеличение энергии частицы:

dA =( , ) = ( , d ) = (d , )=dE

217. Что такое энергия связи? Поясните на примере ядра атома.

Энергия связи – разность между энергией состояния, в котором составляющие части системы бесконечно удалены друг от друга и находятся в непрерывном состоянии активного покоя и полной энергией связанного состоянии системы

где – полная энергия i-го компонента в несвязной системе, а Е – полная энергия связанной системы

ПРИМЕР:

Ядра атомов – сильно связанные системы из большого числа нуклонов. Для полного расщепления ядра на составные части и удаление их на большие расстояния друг от друга необходимо затратить определенную работу А. Энергией связи называют энергию, равную работе, которую надо совершить, чтоб расщепить ядро на свободные нуклоны

Eсвязи = -А

По закону сохранения энергия связи одновременно равна энергии, которая выделится при образовании ядра из отдельных нуклонов

Что такое макроскопическое тело, термодинамическая система?

Макроскопическое тело – большое тело, состоящее из множества молекул.

Термодинамическая система – совокупность макроскопических тел, которые могут взаимодействовать между собой и другими телами (внешней средой) – обмениваться с ними энергией и веществом.

Почему к системам, состоящим из большого числа частиц неприменим динамический метод описания?

Применить динамический метод (записать уравнения движения и начальные условия для всех атомов и молекул и вычистить положение всех частиц в каждый момент времени) невозможно, т.к. для изучения системы, состоящей из большого числа атомов и молекул, информация должна иметь обобщенный характер и относиться не к отдельным частицам, а ко всей совокупности.

Что такое термодинамический метод исследования термодинамической системы?

Метод исследования систем из большого числа частиц, оперирующий величинами, характеризующими систему в целом (p, V, T) при различных превращениях энергии, происходящих в системе, не учитывая внутреннего строения изучаемых тел и характера отдельных частиц.

Что такое статистический метод исследования термодинамической системы?

Метод исследования систем из большого числа частиц, оперирующий закономерностями и средними значениями физических величин, характеризующих всю систему

Какие основные постулаты термодинамики Вы знаете?

0: Существование и транзитивность теплового равновесия:



А и С в равновесии др с др, В – термометр

Состояние равновесия термометра детектируется по термометрическим параметрам.

1: Теплота, полученная термодинамической системой равна сумме работы системы над окр. средой и изменению внутренней энергии.

Q = A +

2: Современная формулировка: в замкнутой системе изменение энтропии не убывает (S ≥ 0)

Известно, что приращение кинетической энергии частицы при перемещении в силовом поле равно элементарной работе всех сил, действующих на частицу: . Если частица находится в стационарном поле консервативных сил, то на нее кроме консервативной силы могут действовать и другие силы, называемые сторонними ; Тогда результирующая сила равна: .

Работа всех этих сил идет на изменение кинетической энергии частицы:

Известно также, что работу консервативных сил поля можно записать как убыль потенциальной энергии частицы в этом поле.

Значит или

Т.о.работа сторонних сил идёт на приращение величины . Эту величину называют полной механической энергией частицы в поле: .

Отсюда видно, что определяется с точностью до постоянной, так как с точностью до постоянной определяется . Теперь можно записать

т.е., приращение полной механической энергии частицы на некотором пути равно работе сторонних сил, действующих на частицу на этом пути; Если , то полная механическая энергия частицы растёт. При - уменьшается.

Пример: Для тела, падающего с обрыва, работа сторонних сил:

Где - силы сопротивления.

Конец работы -

Эта тема принадлежит разделу:

Кинематика поступательного движения

Физические основы механики.. кинематика поступательного движения.. механическое движение формой существования..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Механическое движение
Материя, как известно, существует в двух видах: в виде вещества и поля. К первому виду относятся атомы и молекулы, из которых построены все тела. Ко второму виду относятся все виды полей: гравитаци

Пространство и время
Все тела существуют и движутся в пространстве и времени. Эти понятия являются основополагающими для всех естественных наук. Любое тело имеет размеры, т.е. свою пространственную протяженность

Система отсчета
Для однозначного определения положения тела в произвольный момент времени необходимо выбрать систему отсчета - систему координат, снабженнуя часами и жестко связаннуя с абсолютно твердым телом, по

Кинематические уравнения движения
При движении т.М ее координаты и меняются со временем, поэтому для задания закона движения необходимо указать вид фун

Перемещение, элементарное перемещение
Пусть точка М движется от А к В по криволинейному пути АВ. В начальный момент ее радиус-вектор равен

Ускорение. Нормальное и тангенциальное ускорения
Движение точки характеризуется также ускорением-быстротой изменения скорости. Если скорость точки за произвольное время

Поступательное движение
Простейшим видом механического движения твердого тела является поступательное движение, при котором прямая, соединяющая любые две точки тела перемещается вместе с телом, оставаясь параллельной| сво

Закон инерции
В основе классической механики лежат три закона Ньютона, сформулированные им в сочинении «Математические начала натуральной философии», опубликованном в 1687г. Эти законы явились результатом гениал

Инерциальная система отсчета
Известно, что механическое движение относительно и его характер зависит от выбора системы отсчета. Первый закон Ньютона выполняется не во всех системах отсчета. Например, тела, лежащие на гладком п

Масса. Второй закон Ньютона
Основная задача динамики заключается в определении характеристик движения тел под действием приложенных к ним сил. Из опыта известно, что под действием силы

Основной закон динамики материальной точки
Уравнение описывает изменение движения тела конечных размеров под действием силы при отсутствии деформации и если оно

Третий закон Ньютона
Наблюдения и опыты свидетельствуют о том, что механическое действие одного тела на другое является всегда взаимодействием. Если тело 2 действует на тело 1, то тело 1 обязательно противодействует те

Преобразования Галилея
Они позволяют определить кинематические величины при переходе от одной инерциальной системы отсчета к другой. Возьмем

Принцип относительности Галилея
Ускорение какой-либо точки во всех системах отсчета, движущихся друг относительно друга прямолинейно и равномерно одинаково:

Сохраняющиеся величины
Любое тело или система тел представляют собой совокупность материальных точек или частиц. Состояние такой системы в некоторый момент времени в механике определяется заданием координат и скоростей в

Центр масс
В любой системе частиц можно найти точку, называемую центром масс

Уравнение движения центра масс
Основной закон динамики можно записать в иной форме, зная понятие центра масс системы:

Консервативные силы
Если в каждой точке пространства на частицу, помещенную туда, действует сила, говорят, что частица находится в поле сил, например в поле сил тяжести, гравитационной, кулоновской и других сил. Поле

Центральные силы
Всякое силовое поле вызвано действием определенного тела или системы тел. Сила, действующая на частицу в этом поле об

Потенциальная энергия частицы в силовом поле
То обстоятельство, что работа консервативной силы (для стационарного поля) зависит только от начального и конечного положений частицы в поле, позволяет ввести важное физическое понятие потенциально

Связь между потенциальной энергией и силой для консервативного поля
Взаимодействие частицы с окружающими телами можно описать двумя способами: с помощью понятия силы или с помощью понятия потенциальной энергии. Первый способ более общий, т.к. он применим и к силам

Кинетическая энергия частицы в силовом поле
Пусть частица массой движется в силов

Закон сохранения механической энергии частицы
Из выражения следует, что в стационарном поле консервативных сил полная механическая энергия частицы может изменяться

Кинематика
Поворот тела на некоторый угол можно

Момент импульса частицы. Момент силы
Кроме энергии и импульса существует ещё одна физическая величина, с которой связан закон сохранения - это момент импульса. Моментом импульса частицы

Момент импульса и момент силы относительно оси
Возьмем в интересующей нас системе отсчета произвольную неподвижную ось

Закон сохранения момента импульса системы
Рассмотрим систему, состоящую из двух взаимодействующих частиц, на которые действуют также внешние силы и

Таким образом, момент импульса замкнутой системы частиц остается постоянным, не изменяется со временем
Это справедливо относительно любой точки инерциальной системы отсчета: . Моменты импульса отдельных частей системы м

Момент инерции твердого тела
Рассмотрим твердое тело, которое мож

Уравнение динамики вращения твердого тела
Уравнение динамики вращения твердого тела можно получить, записав уравнение моментов для твердого тела, вращающегося вокруг произвольной оси

Кинетическая энергия вращающегося тела
Рассмотрим абсолютно твердое тело, вращающееся вокруг неподвижной оси, проходящей через него. Разобьем его на частицы с малыми объемами и массами

Работа вращения твердого тела
Если тело приводится во вращение силой

Центробежная сила инерции
Рассмотрим диск, который вращается вместе с шариком на пружине, надетой на спицу, рис.5.3. Шарик находится

Сила Кориолиса
При движении тела относительно вращающейся СО, кроме, появляется ещё одна сила-сила Кориолиса или кориолисова сила

Малые колебания
Рассмотрим механическую систему, положение которой может быть определено с помощъю одной величины, например х. В этом случае говорят, что система имеет одну степень свободы.Величиной х может быть

Гармонические колебания
Уравнение 2-го Закона Нъютона в отсутствие сил трения для квазиупругой силы вида имеет вид:

Математический маятник
Это материальная точка, подвешенная на нерастяжимой нити длиною, совершающая колебания в вертикальной плоск

Физический маятник
Это твердое тело, совершающее колебания вокруг неподвижной оси, связанной с телом. Ось перпендикулярна рисунку и нап

Затухающие колебания
В реальной колебательной системе имеются силы сопротивления, действие которых приводят к уменьшению потенциальной энергии системы, и колебания будут затухающими.В простейшем случае

Автоколебания
При затухающих колебаниях энергия системы постепенно уменьшается и колебания прекращаются. Для того, чтобы их сделать незатухающими, необходимо пополнять энергию системы извне в определенные момент

Вынужденные колебания
Если колебательная система, кроме сил сопротивления, подвергается действию внешней периодической силы, изменяющейся по гармоническому закону

Резонанс
Кривая зависимости амплитуды вынужденых колебаний от приводит к тому, что при некоторой определенной для данной систе

Распространение волн в упругой среде
Если в каком либо месте упругой среды (твёрдой, жидкой, газообразной) поместить источник колебаний, то из-за взаимодействия между частицами колебание будет распространяться в среде от частицы к час

Уравнение плоской и сферической волн
Уравнение волны выражает зависимость смещения колеблющейся частицы от ее кординат,

Волновое уравнение
Уравнение волны является решением дифференциального уравнения, называемого волновым. Для его установления найдем вторые частные производные по времени и координатам от урав

12.4. Энергия релятивистской частицы

12.4.1. Энергия релятивистской частицы

Полная энергия релятивистской частицы складывается из энергии покоя релятивистской частицы и ее кинетической энергии:

E = E 0 + T ,

Эквивалентность массы и энергии (формула Эйнштейна) позволяет определить энергию покоя релятивистской частицы и ее полную энергию следующим образом:

  • энергия покоя -

E 0 = m 0 c 2 ,

где m 0 - масса покоя релятивистской частицы (масса частицы в собственной системе отсчета); c - скорость света в вакууме, c ≈ 3,0 ⋅ 10 8 м/с;

  • полная энергия -

E = mc 2 ,

где m - масса движущейся частицы (масса частицы, движущейся относительно наблюдателя с релятивистской скоростью v ); c - скорость света в вакууме, c ≈ 3,0 ⋅ 10 8 м/с.

Связь между массами m 0 (масса покоящейся частицы) и m (масса движущейся частицы) определяется выражением

Кинетическая энергия релятивистской частицы определяется разностью:

T = E − E 0 ,

где E - полная энергия движущейся частицы, E = mc 2 ; E 0 - энергия покоя указанной частицы, E 0 = m 0 c 2 ; массы m 0 и m связаны формулой

m = m 0 1 − v 2 c 2 ,

где m 0 - масса частицы в той системе отсчета, относительно которой частица покоится; m - масса частицы в той системе отсчета, относительно которой частица движется со скоростью v ; c - скорость света в вакууме, c ≈ 3,0 ⋅ 10 8 м/с.

В явном виде кинетическая энергия релятивистской частицы определяется формулой

T = m c 2 − m 0 c 2 = m 0 c 2 (1 1 − v 2 c 2 − 1) .

Пример 6. Скорость релятивистской частицы составляет 80 % от скорости света. Определить, во сколько раз полная энергия частицы больше ее кинетической энергии.

Решение . Полная энергия релятивистской частицы складывается из энергии покоя релятивистской частицы и ее кинетической энергии:

E = E 0 + T ,

где E - полная энергия движущейся частицы; E 0 - энергия покоя указанной частицы; T - ее кинетическая энергия.

Отсюда следует, что кинетическая энергия является разностью

T = E − E 0 .

Искомой величиной является отношение

E T = E E − E 0 .

Для упрощения расчетов найдем величину, обратную искомой:

T E = E − E 0 E = 1 − E 0 E ,

где E 0 = m 0 c 2 ; E = mc 2 ; m 0 - масса покоя; m - масса движущейся частицы; c - скорость света в вакууме.

Подстановка выражений для E 0 и E в отношение (T /E ) дает

T E = 1 − m 0 c 2 m c 2 = 1 − m 0 m .

Связь между массами m 0 и m определяется формулой

m = m 0 1 − v 2 c 2 ,

где v - скорость релятивистской частицы, v = 0,80c .

Выразим отсюда отношение масс:

m 0 m = 1 − v 2 c 2

и подставим его в (T /E ):

T E = 1 − 1 − v 2 c 2 .

Рассчитаем:

T E = 1 − 1 − (0,80 c) 2 c 2 = 1 − 0,6 = 0,4 .

Искомой величиной является обратное отношение

E T = 1 0,4 = 2,5 .

Полная энергия релятивистской частицы при указанной скорости превышает ее кинетическую энергию в 2,5 раза.


© 2024
colybel.ru - О груди. Заболевания груди, пластическая хирургия, увеличение груди