22.02.2019

Препараты проникающие через плацентарный барьер. Что такое плацентарный барьер? Иммунная система плаценты. Барьерная функция плаценты


Оглавление темы "Строение плаценты. Основные функции плаценты. Пупочный канатик и послед.":
1. Строение плаценты. Поверхности плаценты. Микроскопическое строение зрелой ворсины плаценты.
2. Маточно - плацентарное кровообращение.
3. Особенности кровообращения в системе мать - плацента - плод.
4. Основные функции плаценты.
5. Дыхательная функция плаценты. Трофическая функция плаценты.
6. Эндокринная функция плаценты. Плацентарный лактоген. Хорионический гонодотропин (ХГ, ХГЧ). Пролактин. Прогестерон.
7. Иммунная система плаценты. Барьерная функция плаценты.
8. Околоплодные воды. Объем околоплодных вод. Количество околоплодных вод. Функции околоплодных вод.
9. Пупочный канатик и послед. Пупочный канатик (пуповина). Варианты прикрепления пуповины к плаценте. Размеры пуповины.

Иммунная система плаценты. Барьерная функция плаценты.

Иммунная система плаценты.

Плацента представляет собой своеобразный иммунный барьер , разделяющий два генетически чужеродных организма (мать и плод), поэтому при физиологически протекающей беременности иммунного конфликта между организмами матери и плода не возникает. Отсутствие иммунологического конфликта между организмами матери и плода обусловлено следующими механизмами:

Отсутствие или незрелость антигенных свойств плода;
- наличие иммунного барьера между матерью и плодом (плацента);
- иммунологические особенности организма матери во время беременности.

Барьерная функция плаценты.

Понятие "плацентарный барьер " включает в себя следующие гистологические образования: синцитиотрофобласт, цитотрофобласт, слой мезенхимальных клеток (строма ворсин) и эндотелий плодового капилляра. Плацентарный барьер в какой-то степени можно уподобить гематоэнцефалическому барьеру, который регулирует проникновение различных веществ из крови в спинномозговую жидкость. Однако в отличие от гематоэнцефалического барьера, избирательная проницаемость которого характеризуется переходом различных веществ только в одном направлении (кровь - цереброспинальная жидкость), плацентарный барьер регулирует переход веществ и в обратном направлении, т.е. от плода к матери. Трансплацентарный переход веществ, постоянно находящихся в крови матери и попавших в нее случайно, подчиняется разным законам. Переход от матери к плоду химических соединений, постоянно присутствующих в крови матери (кислород, белки, липиды, углеводы, витамины, микроэлементы и др.), регулируется достаточно точными механизмами, в результате чего одни вешества содержатся в крови матери в более высоких концентрациях, чем в крови плода, и наоборот. По отношению к веществам, случайно попавшим в материнский организм (агенты химического производства, лекарственные препараты и т.д.), барьерные функции плаценты выражены в значительно меньшей степени.

Проницаемость плаценты непостоянна . При физиологической беременности проницаемость плацентарного барьера прогрессивно увеличивается вплоть до 32-35-й недели беременности, а затем несколько снижается. Это обусловлено особенностями строения плаценты в различные сроки беременности, а также потребностями плода в тех или иных химических соединениях.


Ограниченные барьерные функции плаценты в отношении химических веществ, случайно попавших в организм матери, проявляются в том, что через плаценту сравнительно легко переходят токсичные продукты химического производства, большинство лекарственных препаратов, никотин, алкоголь, пестициды, возбудители инфекций и т.д. Это создает реальную опасность для неблагоприятного действия этих агентов на эмбрион и плод.

Барьерные функции плаценты наиболее полно проявляются только в физиологических условиях, т.е. при неосложненном течении беременности. Под воздействием патогенных факторов (микроорганизмы и их токсины, сенсибилизация организма матери, действие алкоголя, никотина, наркотиков) барьерная функция плаценты нарушается, и она становится проницаемой даже для таких веществ, которые в обычных физиологических условиях через нее переходят в ограниченном количестве.


Человека состоит из двух частей: плодовой (собственно, хорион) и материнской (эндометрий матки – decidua basalis).

Плодовая часть со стороны амниотической полости покрыта амнионом, который представлен однослойным призматическим эпителием и тонкой соединительнотканной пластинкой. В хориальной пластинке располагаются крупные кровеносные сосуды, которые пришли сюда по пуповине. Они располагаются в особой соединительной ткани – слизистой ткани . Слизистая ткань в норме встречается лишь до рождения – в пуповине и хориальной пластинке. Она богата гликозаминогликанами, которые определяют е высокий тургор, поэтому сосуды и в пуповине, и в хориальной пластинке никогда не пережимаются.

Хориальная пластинка отграничена от межворсинчатого пространства и материнского кровотока слоем цитотрофобласта и фибриноидом (Миттабуха). Фибриноид выполняет иммуно-биологическую барьерную функцию. Это “заплатка” в месте повреждения цитотрофобласта, препятствующая контакту материнской крови с кровью и тканями плода, т.е. он препятствует иммунному конфликту.

В межворсинчатом пространстве определяются ворсинки разного диаметра. Во-первых, это первичные (основные) ворсинки . Они могут достигать глубоких слоев эндометрия и врастать в него, тогда они называются якорными. Другие могут не соприкасаться с материнской частью плаценты. От основных ворсинок первого порядка ветвятся вторичные ворсинки , от которых ветвятся третичные ворсинки (обычно, окончательные; только при неблагоприятных условиях беременности или при переношенной беременности может происходить дальнейшее ветвление ворсинок).

В трофике плода участие в основном принимают третичные ворсинки. Рассмотрим их строение. Центральную часть ворсинки занимают кровеносные сосуды, вокруг них расположена соединительная ткань. На первых этапах ворсинку отграничивает слой цитотрофобласта, но затем его клетки сливаются и образуют толстый синцитиотрофобласт . Участки цитотрофобласта остаются лишь вокруг якорных пластин.

Т.о., между материнской и плодовой кровью образуется плацентарный барьер. Он представлен:

Эндотелием капилляров ворсинки,

Базальной мембраной капилляров,

Соединительнотканной пластинкой,

Базальной мембраной цитотрофобласта,

Цитотрофобластом или синцитиотрофобластом.

Если синцитиотрофобласт разрушается, то в этом участке также образуется фибриноид (Лангханса), который также выполняет роль барьера.

Т.о., в плацентарном барьере главную роль выполняет синцитий, который богат различными ферментативными системами, обеспечивающими выполнение дыхательной, трофической и частично белоксинтезирующей функций. Через плацентарный барьер из крови матери поступают аминокислоты, простые сахара, липиды, электролиты, витамины, гормоны, антитела, а также лекарственные препараты, алкоголь, наркотики и проч. Плод же отдает углекислоту и различные азотистые шлаки, и, кроме того, гормоны плода, что часто ведет к изменению внешнего вида будущей матери.

Материнская часть плаценты представлена измененным эндометрием, в который вросли ворсинки хориона (т.е., основной отпадающей оболочкой). Он представлен волокнистыми структурами и большим количеством очень крупных децидуальных клеток, которые имеют отношение и к барьерной, трофической, регуляторной функциям. Эти клетки частично остаются в эндометрии после родов, не позволяя вторично имплантироваться в этот участок. Децидуальные клетки окружены фибриноидом (Рора), который в целом отгораживает материнскую часть плаценты от межворсинчатого пространства. Фибриноид Рора также выполняет барьерную иммунобиологическую функцию.



Плацента человека состоит из тканей матери и плода. Кровеносные сосуды матери впадают в межворсинчатое пространство, в которое проникают выросты хориона. В последних, в рыхлой ткани, находятся сосуды плода.

На поверхности, омываемой материнской кровью, имеется синцитиальная ткань, так называемая трофобластная оболочка. Обмен веществом между кровью матери и плода осуществляется, таким образом, через следующие структуры: трофобластная оболочка, рыхлая ткань стромы выростов хориона, эндотелий капилляров хориона. В процессе развития плода толщина этих слоев не одинакова и в конце периода беременности составляет лишь несколько микрон. Площадь контакта между поверхностью хориоидных выростов и кровью матери также не постоянна и в предродовом периоде составляет около 14 м 2 . В ранних периодах беременности толщина барьера существенно больше, а площадь поверхности - меньше. В этой связи и проницаемость плацентарного барьера для ксенобиотиков в различные сроки вынашивания плода не одинакова. В целом у человека, она постоянно увеличивается до 8 месяца беременности, а затем опять снижается. Последствия для плода проникновения ксенобиотиков через плаценту определяется соотношением мощности потока токсиканта через плацентарный барьер с одной стороны, размерами развивающегося плода и состоянием делящихся и дифференцирующихся клеток его тканей, с другой.

Вы также можете найти интересующую информацию в научном поисковике Otvety.Online. Воспользуйтесь формой поиска:

Еще по теме 9.1. Плацентарный барьер:

  1. 5.1.1. Некоторые свойства гематоэнцефалического и гематоликворного барьеров
  2. Патофизиология реактивности и резистентности организма. Биологические барьеры

Изучение перехода антибиотиков от матери к плоду, определение их содержания в плаценте, органах плода и околоплодной жидкости необходимы для оценки потенциальной токсичности этих препаратов, возможности их лечебного использования во время беременности.

Основной путь - простая диффузия через плаценту. Она осуществляется вследствие разницы концентрации препарата в сыворотке крови матери и плода и определяется теми же факторами, которые регулируют диффузию лекарственных веществ через другие биологические мембраны. К ним относятся физиологические характеристики системы «мать - плацента - плод» и физико-химические свойства препаратов. Среди физиологических факторов имеют значение гемодинамические изменения в организме матери и плода, толщина и степень зрелости плаценты, уровень метаболической активности плацентарной ткани.

Скорость диффузии через плацентарный барьер прямо пропорциональна градиенту концентрации вещества в системе «мать - плод», величине поверхности плаценты и обратно пропорциональна ее толщине. Трансплацентарно лучше диффундируют препараты с низкой молекулярной массой (при ее значении более 1000 ограничивается переход лекарственных веществ), хорошо растворимые в липидах, с низкой степенью ионизации. Большое значение имеет степень связывания препарата белками крови, так как диффундирует только свободная (несвязанная) часть препарата. Поэтому антибиотики, мало связывающиеся белками крови, например, ампициллин (20 % связывания), проходят через плаценту лучше, чем препараты с высокой степенью связывания, например, диклоксациллин (90 % связывания).

На степень диффузии антибиотиков через плаценту оказывает влияние срок беременности. Это обусловлено прогрессивным увеличением числа вновь образуемых ворсин хориона, увеличением поверхности плацентарной мембраны, усилением кровообращения по обе ее стороны, изменением ее толщины. В начале беременности плацентарная мембрана имеет относительно большую толщину, которая по мере развития беременности постепенно уменьшается. В последнем триместре отмечается выраженное уменьшение эпителиального слоя трофобласта.

Существенную роль играет также интенсивность материнского кровотока. Как известно, во время беременности кровоток в матке значительно возрастает. Общая площадь поперечного сечения спиральных артерий увеличивается в 30 раз. Перфузионное давление, обеспечивающее обмен в межворсинчатом пространстве, с увеличением срока беременности возрастает, что способствует лучшему трансплацентарному переходу лекарственных веществ, особенно к концу беременности.

Зависимость степени диффузии через плаценту от срока беременности отмечается для антибиотиков практически всех групп. Антибиотики группы цефалоспоринов (цефазолин, цефотаксим и др.) в значительно больших количествах переходят к плоду в III триместре беременности, чем в I и во II. Исследования, проведенные в эксперименте на белых крысах в ранние и поздние сроки беременности и в разные триместры беременности у женщин, показали, что с увеличением гестационного срока степень перехода цефтазидима (цефалоспоринового антибиотика третьего поколения) к плоду увеличивается. Такие же данные получены для пенициллинов, аминогликозидов, макролидов. Изучение действия антибиотиков на плод, проведенное на эмбрионах, культивируемых in vitro, а также в условиях целостного организма, показали, что они не обладают тератогенным действием. Вместе с тем некоторые антибиотики могут оказывать эмбриотоксическое действие, осуществляющееся прямым и косвенным путем. Так, аминогликозиды повреждают VIII пару черепно-мозговых нервов, что влечет за собой нарушение развития органа слуха: они могут также оказывать нефротоксическое действие. Тетрациклины откладываются в костной ткани, нарушают развитие зубной ткани и рост плода; левомицетин может вызвать

апластическую анемию и так называемый «грей-синдром» (цианоз, желудочно-кишечные расстройства, рвота, нарушение дыхания, гипотермия, острые поражения легких). Косвенным путем антибиотики могут оказывать эмбрио-токсическое действие за счет уменьшения кислородонесущей способности крови матери, индукции гипо- и гипергликемии, уменьшения проницаемости плаценты для витаминов и других питательных веществ, а также в результате нарушений, приводящих к гипотрофии плода и замедлению его развития.

Чувствительность плода к антибактериальным препаратам различна в разные стадии эмбриогенеза. Во время беременности имеются 5 принципиально важных периодов, определяющих чувствительность эмбриона, плода и новорожденного к антибактериальным препаратам: 1-й - до оплодотворения или в период имплантации; 2-й - пост-имплантационный период или период органогенеза, соответствующий первому триместру беременности; 3-й период развития плода, соответствующий второму и третьему триместрам беременности; 4-й период - роды; 5-й - послеродовой период и кормление грудью.

Плод наиболее чувствителен к антибиотикам в постимплантационном периоде, т.е. в I триместре беременности, когда начинается дифференциация эмбриона. Во II и III триместрах риск повреждения меньше, так как на этой стадии развития большинство органов и систем плода уже дифференцировано и менее подвержено повреждающему воздействию лекарственных веществ. Было показано, что эмбрионы предымплантационного периода развития оказались менее чувствительными к действию антибиотиков по сравнению с эмбрионами периода органогенеза и плацентации. Под влиянием тетрациклина и фузидина в этот период отмечалось повышение показателей постимплантационной гибели, возникновение гипотрофии плода, недоразвитие плаценты.

Лекарственные вещества по степени их токсического действия на плод разделены на 5 категорий (категории риска применения лекарств при беременности разработаны Американской администрацией по контролю за лекарствами и пищевыми продуктами - FDA):
- категория А - нет фетального риска, доказана безопасность для применения во время беременности;
- категория В - фетальный риск не установлен при исследовании на животных или человеке;
- категория С - фетальный риск не установлен в адекватных исследованиях на человеке;
- категория D - существует некоторая возможность фетального риска. Нужно дальнейшее изучение препарата;
- категория Х - доказан фетальный риск. Противопоказано применение во время беременности.

По этой классификации все антибиотики группы пенициллина, цефалоспорины, эритромицин, азитромицин, метронидазол, меропенем, нитрофураны, а также противогрибковые препараты (нистатин, амфотерицин В) относятся к категории В, тобрамицин, амикацин, канамицин, стрептомицин - к категории D. Известно, что аминогликозиды могут оказывать ото- и нефротоксическое действие на плод. При использовании гентамицина и амикацина этот эффект встречается редко (только при длительном применении больших доз препаратов).

Хлорамфеникол относится к категории С, так же как триметаприм, ванкомицин и фторхинолоны. Из антимикотических препаратов к этой же категории принадлежит гризеофульвин. Тетрациклин относится к категории D.

Для рационального использования антибактериальных препаратов во время беременности с учетом побочного действия на мать, плод и новорожденного антибиотики разделены на 3 группы. Группа I включает антибиотики, применение которых во время беременности противопоказано. В нее входят хлорамфеникол, тетрациклин, триметаприм, т.е. вещества, оказывающие эмбриотоксическое действие. В эту же группу включены фторхинолоны, у которых в эксперименте обнаружено действие на хрящевую ткань суставов. Однако действие их на плод человека мало изучено. К группе II относятся антибиотики, которые во время беременности следует применять с осторожностью: аминогликозиды, сульфаниламиды (могущие вызвать желтуху), нитрофураны (способные вызвать гемолиз), а также ряд антибактериальных препаратов, действие которых на плод недостаточно изучено. Препараты этой группы назначают беременным только по строгим показаниям при тяжелых заболеваниях, возбудители которых устойчивы к другим антибиотикам, или в случаях, когда проводимое лечение неэффективно. В группу III входят препараты, не оказывающие эмбриотоксического действия, - пенициллины, цефалоспорины, эритромицин (основание). Эти антибиотики можно считать препаратами выбора при лечении инфекционной патологии у беременных.

Ниже приведены данные относительно перехода через плаценту и действия на плод антибиотиков, наиболее широко используемых в акушерской практике.

Пенициллины

Степень перехода через плаценту от матери к плоду препаратов этой группы определяется уровнем связывания белками крови. Бензилпенициллин, ампициллин, метициллин мало связываются белками крови; они обнаруживаются в крови и тканях плода в более высокой концентрации, чем оксациллин и диклоксациллин, обладающие высокой степенью связывания.

При переходе бензилпенициллина через плаценту его концентрация составляет от 10 до 50 % от уровня в материнской крови. Из крови плода препарат достаточно быстро проникает в его органы и ткани. Терапевтическая концентрация антибиотика обнаруживается в печени, легких и почках плода. В конце беременности степень перехода бензилпенициллина через плаценту повышается.

Максимальное содержание ампициллина в сыворотке крови плода определяется через 2 ч после внутримышечного введения и составляет 20 % концентрации в крови матери. Его количество в околоплодных водах нарастает медленнее, чем в крови матери и плода, но удерживается более длительный срок в терапевтически активной концентрации. Препараты группы пенициллина не обладают тератогенным и эмбриотоксическим действием. Возможно аллергическое воздействие на плод.

В настоящее время представляет интерес переход через плаценту так называемых защищенных пенициллинов - комбинации пенициллинов с клавулановой кислотой и сульбактамом, наиболее часто применяющихся для лечения воспалительных процессов. Действие этих комбинаций на плод изучено еще недостаточно. Известно, что ампициллин/сульбактам быстро проникает через плаценту в невысоких концентрациях. При применении этого антибиотика отмечено снижение уровня эстриола в плазме крови и выделение его с мочой. Определение эстриола в моче используется в качестве теста и при оценке состояния фетоплацентарной системы. Снижение его уровня может являться признаком развития ди-стресс-синдрома.

Амоксициллин/клавулановая кислота, также как сам амоксициллин, хорошо проникает через плаценту и создает в тканях плода высокие концентрации. Данные о повреждающих действиях этого антибиотика и его комбинации с клавулановой кислотой отсутствуют. Однако в связи с недостаточной изученностью этого вопроса, отсутствием контролируемых исследований применение защищенных пенициллинов в I триместре беременности не рекомендуется, во II и III триместрах применять их следует с осторожностью.

Пиперациллин также легко проходит через плаценту: через 30 мин после введения антибиотика матери он определяется в тканях плода в терапевтически активной концентрации. Антибиотик проходит и в амнио-тическую жидкость, где его уровень достигает минимально подавляющей концентрации. Карбапенемы (имипенем, меропенем) обладают способностью накапливаться в амниотической жидкости, и их концентрация в ней выше таковой в сыворотке крови матери на 47 %. Эту особенность следует учитывать при повторном введении антибиотиков.

Цефалоспорины

Антибиотики этой группы также хорошо переходят через плацентарный барьер. Степень трансплацентарного перехода цефалоспоринов в значительной мере определяется сроком беременности: в первые месяцы она невысока и возрастает к концу беременности. Эта закономерность относится к цефалоспоринам разных поколений. Так, сравнение кинетики цефрадина в I и III триместрах беременности после внутривенной инфузии 2 г препарата показало, что содержание антибиотика в тканях плода, пуповинной крови, плодных оболочках и в околоплодных водах существенно выше в поздние сроки. Степень трансплацентарного перехода цефтазидима у женщин в III триместре возрастает почти в 3 раза. Аналогичные закономерности отмечены и в отношении других цефалоспоринов разных поколений.

При введении беременным женщинам терапевтических доз цефалоспоринов в крови плода, в околоплодных водах создается концентрация препаратов, которая выше минимально подавляющей для возбудителей внутриутробной инфекции. Экспериментальные и клинические данные свидетельствуют об отсутствии тератогенных и эмбриотоксических свойств у цефалоспоринов первого и второго, а также у некоторых препаратов третьего поколения.

Аминогликозиды

Переход аминогликозидов через плаценту и их действие на плод изучены недостаточно в связи с ограниченным применением этих препаратов при беременности из-за возможного токсического действия. Немногочисленные исследования свидетельствуют о хорошем проникновении антибиотиков этой группы через плацентарный барьер; после их введения беременной женщине концентрация в пуповинной крови достигает 30–50 % от уровня в крови матери. В плаценте аминогликозиды также накапливаются в значительном количестве, приближающемся к уровню в пуповинной крови. Гентамицин проникает через плаценту в средних концентрациях. В амнио-тической жидкости он появляется позже, чем в пуповинной крови, однако и в крови плода, и в околоплодных водах уровень антибиотика при введении матери терапевтических доз превышает его минимальную подавляющую концентрацию для ряда возбудителей инфекций. Его применение во время беременности не рекомендуется из-за риска ототоксичности. Нетилмицин отличается от других антибиотиков группы аминогликозидов большей степенью клинической безопасности, более высоким терапевтическим индексом. Он проникает через плаценту в высоких концентрациях и создает терапевтически активные концентрации в пуповинной крови и амниотической жидкости. Однако его безопасность при беременности изучена недостаточно, поэтому рекомендуется его применение с осторожностью только в случае крайней необходимости, так же как и других аминогликозидов.

Из других антибиотиков группы аминогликозидов относительно хорошо изучен трансплацентарный переход канамицина; концентрация антибиотика в крови плода после его внутримышечного введения составляет 50–70 % от уровня в крови матери. Содержание канамицина в органах плода несколько ниже - 30–50 %, в околоплодную жидкость он проникает в ограниченных количествах.

Существенное влияние на переход аминогликозидов через плаценту оказывает срок беременности. Отмечено уменьшение проницаемости плаценты для гентамицина в поздние сроки беременности. Возможно, это связано с более низкой концентрацией антибиотика в крови матери именно в этот период. Переход других аминогликозидов по мере увеличения срока беременности возрастает. Исследования, проведенные на животных, а также данные, полученные в клинике, свидетельствуют об отсутствии тератогенного влияния антибиотиков этой группы.

Введение стрептомицина и дигидрострептомицина беременным женщинам может вызвать у новорожденных детей ототоксический эффект. Другие аминогликозиды редко обусловливают поражение слухового нерва. Тем не менее эти препараты во время беременности применять не следует. Исключение составляют тяжело протекающие инфекционные процессы при отсутствии альтернативного метода лечения; в подобной ситуации их назначают короткими курсами или однократно суточную дозу.

Хлорамфеникол

Быстро переходит через плацентарный барьер, концентрация антибиотика в крови плода достигает 30–70 % от уровня в крови матери. Хлорамфеникол запрещено применять во время беременности из-за его способности вызывать тяжелые осложнения у матери и токсические поражения у плода. У новорожденных, родившихся у женщин, леченных во время беременности этим препаратом, может развиться так называемый «грей-синдром». Синдром обусловлен неспособностью печени и почек новорожденного к метаболизму и выведению антибиотика. Летальность при нем достигает 40 %.

Тетрациклины

Тетрациклины свободно переходят через плацентарный барьер, их концентрация в крови плода колеблется в пределах 25–75 % от уровня в крови матери. Концентрация антибиотика в амниотической жидкости не превышает 20–30 % от уровня в крови плода. Препараты группы тетрациклина оказывают выраженное эмбриотоксическое действие, проявляющееся в нарушении развития скелета плода и зубной ткани. Механизм действия тетрациклина на плод связан с его интерференцией с синтезом протеинов, взаимодействием с кальцием и другими катионами, принимающими участие в процессе минерализации костей скелета. Возможной точкой приложения влияния тетрациклина являются митохондрии клеток, участ-вующих в этих процессах. Действие тетрациклина на рост скелета начинает проявляться во II триместре беременности, когда возникают центры окостенения. В связи с выраженной эмбриотоксичностью тетрациклины во время беременности применять не рекомендуется.

Макролиды

Антибиотики этой группы проходят через плацентарный барьер, но уровень их в фетальной крови невысок, так же как в амниотической жидкости. Неблагоприятного действия на мать и плод макролиды не оказывают. Препараты рекомендуется применять во время беременности (при аллергии к пенициллинам и цефалоспоринам) для лечения гнойно-воспалительных процессов.

Что касается эритромицина, то данные об увеличении частоты врожденных аномалий развития плода после его приема отсутствуют. Антибиотик проникает через плаценту в низких концентрациях. Во время беременности противопоказано применение эритромицина-эстолата.

Для лечения хламидийной инфекции широко используется азитромицин. Длительное время его не рекомендовали применять во время беременности из-за отсутствия данных о влиянии антибиотика на плод. В последнее время появились исследования, свидетельствующие об отсутствии неблагоприятного действия. Получены также данные о возможности применения его для лечения хламидийной инфекции у беременных.

Действие других макролидов на плод (кларитромицина, спирамицина, рокситромицина, джозамицина) практически не изучено, вследствие чего их применение во время беременности не рекомендуется.

Из гликопептидов ванкомицин проникает через плаценту в сравнительно высоких концентрациях. Имеются сообщения о нарушении слуха у новорожденных при лечении матери ванкомицином. В I триместре беременности применение этого антибиотика запрещено, во II и III триместрах применять его следует с осторожностью (по жизненным показаниям).

Метронидазол. Препарат быстро проходит через плаценту и создает в крови плода концентрации, приближающиеся к уровню в крови матери. В амниотической жидкости его содержание также сравнительно высокое (50–75 % от уровня в крови плода). Сообщения о неблагоприятном влиянии метронидазола на плод отсутствуют, однако в связи с имеющимися данными о канцерогенном действии на грызунов и мутагенном - на бактерии, акушеры воздерживаются применять препарат внутрь и парентерально во время беременности (особенно в I триместре).

Клиндамицин и линкомицин хорошо проникают через плаценту к плоду при введении их женщинам как в первую половину беременности, так и в конце ее. При этом в органах плода - печени, почках, легких создается концентрация препарата более высокая, чем в фетальной крови. Однако информация о действии препаратов на плод недостаточная, вследствие чего во время беременности их используют с осторожностью.

Сульфаниламиды также легко проникают через плаценту, проходят в кровь и ткани плода, в амниотическую жидкость. Прямого токсического действия препаратов этой группы на плод не установлено. Однако сульфаниламиды конкурируют с билирубином за место связи с белками, вследствие чего уровень свободного билирубина в сыворотке крови новорожденного может повышаться, в связи с чем увеличивается риск развития желтухи.

Фторхинолоны проникают через плаценту в высоких концентрациях. Не обладают ни тератогенным, ни эмбриотоксическим действием. Не обнаружено также их мутагенного действия. Имеются экспериментальные данные об отрицательном влиянии фторхинолонов на рост и развитие хрящевой ткани у неполовозрелых животных. Подобного действия на хрящевую ткань у людей не отмечено, тем не менее вследствие недостаточного изучения влияния фторхинолонов на плод применение этих препаратов во время беременности и кормления грудью не рекомендуется.

Плацента связывает плод с организмом матери и состоит из плодной (ворсинчатый хорион) и материнской (децидуальная оболочка) частей (рис. 20–4 и 20–5). В плаценте ворсины хориона, содержащие кровеносные капилляры плода, омываются кровью беременной, циркулирующей в межворсинчатом пространстве. Кровь плода и кровь беременной разделены плацентарным барьером - трофобластом, стромой ворсин и эндотелием капилляров плода. Перенос веществ через плацентарный барьер осуществляется за счёт пассивной диффузии (кислород, углекислый газ, электролиты, моносахариды), активного транспорта (железо, витамин С) или опосредованной переносчиками облегчённой диффузии (глюкоза, Ig).

Рис . 20–5 . Децидуальная оболочка матки и плацента . Полость матки выстилает пристеночная часть децидуальной оболочки. Децидуальная оболочка, обращённая к ворсинчатому хориону, входит в состав плаценты.

Кровоток в плаценте

Пуповина , или пупочный канатик (рис. 20–3, 20–4) - шнуровидное образование, содержащее две пуповинные артерии и одну пуповинную вену, несущие кровь от плода к плаценте и обратно. По пуповинным артериям течёт венозная кровь от плода к ворсинкам хориона в составе плаценты. По вене к плоду притекает артериальная кровь, обогащённая кислородом в кровеносных капиллярах ворсинок. Общий объёмный кровоток через пуповину составляет 125 мл/кг/мин (500 мл/мин).

Артериальная кровь беременной впрыскивается непосредственно в межворсинчатое пространство (лакуны, см. рис. 20–3 и 20–4) под давлением и толчками из примерно сотни расположенных перпендикулярно по отношению к плаценте спиральных артерий. Лакуны полностью сформированной плаценты содержат около 150 мл омывающей ворсинки материнской крови, полностью замещаемой 3–4 раза в минуту. Из межворсинчатого пространства венозная кровь оттекает через расположенные параллельно плаценте венозные сосуды.

Плацентарный барьер . В состав плацентарного барьера (материнская кровь  кровь плода) входят: синцитиотрофобласт  цитотрофобласт  базальная мембрана трофобласта  соединительная ткань ворсинки  базальная мембрана в стенке капилляров ворсинки  эндотелий капилляров ворсинки. Именно через эти структуры происходит обмен между кровью беременной и кровью плода. Именно эти структуры реализуют защитную (в том числе иммунную) функцию плода.

Функции плаценты

Плацента выполняет множество функций, включая транспорт питательных веществ и кислорода от беременной к плоду, удаление продуктов жизнедеятельности плода, синтез белков и гормонов, иммунологическую защиту плода.

Транспортная функция

Перенос кислорода и диоксида углерода происходит путём пассивной диффузии.

O 2 . Парциальное давление кислорода (Po 2) артериальной крови спиральных артериол при pH 7,4 равно 100 мм рт.ст при насыщении Hb кислородом 97,5%. В то же время Po 2 крови в венозной части капилляров плода составляет 23 мм рт.ст. при насыщении Hb кислородом 60%. Хотя Po 2 материнской крови в результате диффузии кислорода быстро уменьшается до 30–35 мм рт.ст., даже этой разницы в 10 мм рт.ст. достаточно для адекватного снабжения кислородом организма плода. Эффективной диффузии кислорода от матери к плоду способствуют дополнительные факторы.

 Hb плода имеет большее сродство к кислороду, чем дефинитивного Hb беременной (кривая диссоциации HbF сдвинута влево). При одинаковых Po 2 Hb плода связывает на 20–50% больше кислорода, чем Hb матери.

 Концентрация Hb в крови плода выше (это увеличивает кислородную ёмкость), чем в крови матери. Таким образом, несмотря на то, что насыщение кислородом крови плода редко превышает 80%, гипоксии тканей плода не возникает.

 pH крови плода ниже pH цельной крови взрослого человека. При увеличении концентрации ионов водорода сродство кислорода к Hb уменьшается (эффект Бор а), поэтому кислород легче переходит из крови матери в ткани плода.

CO 2 диффундирует через структуры плацентарного барьера по направлению концентрационного градиента (примерно 5 мм рт.ст.) между кровью пуповинных артерий (48 мм рт.ст.) и кровью лакун (43 мм рт.ст.). Кроме того, Hb плода имеет меньшее сродство к CO 2 , чем дефинитивный Hb матери.

Мочевина , креатинин , стероидные гормоны , жирные кислоты , билирубин . Их перенос происходит путём простой диффузии, но плацента слабо проницаема для образующихся в печени глюкуронидов билирубина.

Глюкоза - облегчённая диффузия.

Аминокислоты и витамины - активный транспорт.

Белки (например, трансферрин, гормоны, некоторые классы Ig), пептиды , липопротеины - опосредованный рецепторами эндоцитоз.

Электролиты - Na + , K + , Cl – , Ca 2+ , фосфат - пересекают барьер путём диффузии и с помощью активного транспорта.

Иммунологическая защита

 Транспортируемые через плацентарный барьер материнские АТ класса IgG обеспечивают пассивный иммунитет плода.

 Организм беременной не отторгает иммунологически чужеродный плод из-за локального угнетения реакций клеточного иммунитета женщины и отсутствия гликопротеинов главного комплекса гистосовместимости (HLA) в клетках хориона.

 Хорион синтезирует вещества, угнетающие клеточный иммунный ответ (экстракт из синцитиотрофобласта тормозит in vitro размножение клеток иммунной системы беременной).

 В клетках трофобласта не экспрессируются Аг HLA, что обеспечивает защиту фетоплацентарного комплекса от распознавания иммунокомпетентными клетками беременной. Именно поэтому отщеплённые от плаценты участки трофобласта, попадая в лёгкие женщины, не отторгаются. В то же время другие типы клеток в ворсинках плаценты несут на своей поверхности Аг HLA. Трофобласт не содержит также эритроцитарных Аг систем AB0 и Rh.

Детоксикация некоторых ЛС.

Эндокринная функция . Плацента - эндокринный орган. Плацента синтезирует множество гормонов и других биологически активных веществ, имеющих важное значение для нормального течения беременности и развития плода (ХГТ, прогестерон, хорионический соматомаммотропин, фактор роста фибробластов, трансферрин, пролактин, релаксины, кортиколиберин, эстрогены и другие; см. рис. 20–6, а также рис. 20–12 в книге, см. также табл. 18–10).

Хорионический гонадотропин (ХГТ) поддерживает непрерывную секрецию прогестерона в жёлтом теле до тех пор, пока плацента не начнёт синтезировать прогестерон в количестве, достаточном для нормального течения беременности. Активность ХГТ быстро возрастает, удваиваясь каждые 2–3 дня и достигая пика на 80-й день (80 000–100 000 МЕ/л), затем снижается до 10 000–20 000 МЕ/л и остаётся на этом уровне до конца беременности.

Маркёр беременности . ХГТ продуцируют только клетки синцитиотрофобласта. ХГТ можно обнаружить в сыворотке крови беременной через 8–9 дней после оплодотворения. Количество секретируемого ХГТ напрямую связано с массой цитотрофобласта. На ранних сроках беременности это обстоятельство используют для диагностики нормальной и патологической беременности. Содержание ХГТ в крови и в моче беременной можно определить биологическим, иммунологическим и радиологическим методами. Иммунологические (в том числе радиоиммунологические) тесты специфичнее и чувствительнее биологических методов. При снижении концентрации ХГТ вдвое по сравнению с нормальными значениями можно ожидать нарушения имплантации (например, эктопическую беременность или неразвивающуюся маточную беременность). Повышение концентрации ХГТ выше нормальных значений часто связано с многоплодной беременностью или пузырным заносом.

Стимуляция секреции прогестерона жёлтым телом . Важная роль ХГТ заключается в предотвращении регрессии жёлтого тела, что обычно происходит на 12–14-й дни после овуляции. Значительная структурная гомология ХГТ и ЛГ позволяет ХГТ связываться с рецепторами лютеоцитов для ЛГ. Это приводит к продолжению работы жёлтого тела после 14-го дня от момента овуляции, что обеспечивает прогрессирование беременности. Начиная с 9-й недели, синтез прогестерона осуществляет плацента, масса которой к этому сроку позволяет образовывать прогестерон в количестве, достаточном для пролонгирования беременности (рис. 20–6).

Стимуляция синтеза тестостерона клетками Ляйдига у плода мужского пола. К концу I триместра ХГТ стимулирует гонады плода к синтезу стероидных гормонов, необходимых для дифференцировки внутренних и наружных половых органов.

 Синтез и секрецию ХГТ поддерживает секретируемый цитотрофобластом гонадолиберин .

Прогестерон . В первые 6–8 недель беременности главный источник прогестерона - жёлтое тело (содержание в крови беременной 60 нмоль/л). Начиная со II триместра беременности основным источником прогестерона становится плацента (содержание в крови 150 нмоль/л). Жёлтое тело продолжает синтезировать прогестерон, но в последнем триместре беременности плацента вырабатывает его в 30–40 раз больше. Концентрация прогестерона в крови продолжает увеличиваться вплоть до конца беременности (содержание в крови 500 нмоль/л, примерно в 10 раз больше, чем вне беременности), когда плацента синтезирует 250 мг прогестерона в сутки. Для определения содержания прогестерона используют радиоиммунный метод, а также уровень прегнандиола - метаболита прогестерона - хроматографически.

 Прогестерон способствует децидуализации эндометрия.

 Прогестерон, ингибируя синтез Пг и уменьшая чувствительность к окситоцину, угнетает возбудимость миометрия до наступления родов.

 Прогестерон способствует развитию альвеол молочной железы.

Рис . 20 6 . Содержание гормонов в плазме крови при беременности

Эстрогены . При беременности содержание эстрогенов в крови беременной (эстрон, эстрадиол, эстриол) существенно повышено (рис. 20–6) и превышает значения вне беременности примерно в 30 раз. При этом эстриол составляет 90% всех эстрогенов (1,3 нмоль/л на 7-й неделе беременности, 70 нмоль/л к концу беременности). К концу беременности экскреция эстриола с мочой достигает 25–30 мг/сут. Синтез эстриола происходит при интеграции метаболических процессов беременной, плаценты и плода. Большую часть эстрогенов секретирует плацента, но в ней происходит не синтез этих гормонов de novo , а лишь ароматизация стероидных гормонов, синтезированных надпочечниками плода. Эстриол - показатель нормальной жизнедеятельности плода и нормального функционирования плаценты. С диагностическими целями содержание эстриола определяют в периферической крови и суточной моче. Высокие концентрации эстрогена вызывают увеличение мышечной массы матки, размеров молочной железы, наружных половых органов.

Релаксины - гормоны из семейства инсулинов - в течение беременности оказывают расслабляющее действие на миометрий, перед родами приводят к расширению маточного зева и повышению эластичности тканей лонного сочленения.

Соматомаммотропины 1 и 2 (плацентарные лактогены) образуются в плаценте спустя 3 нед после оплодотворения и могут быть определены в сыворотке крови женщины радиоиммунным методом с 6 нед беременности (35 нг/мл, 10 000 нг/мл в конце беременности). Эффекты соматомаммотропинов, как и эффекты гормона роста, опосредуют соматомедины.

Липолиз . Стимулируют липолиз и увеличивают содержание в плазме свободных жирных кислот (энергетический резерв).

Углеводный обмен . Подавляют утилизацию глюкозы и глюконеогенез у беременной.

Инсулиногенное действие . Повышают в плазме крови содержание инсулина, одновременно снижая его эффекты на клетки–мишени.

Молочные железы . Индуцируют (как и пролактин) дифференцировку секреторных отделов.

Пролактин . Во время беременности существует три потенциальных источника пролактина: передняя доля гипофиза матери и плода, децидуальная ткань матки. У небеременной женщины содержание пролактина в крови находится в диапазоне 8–25 нг/мл, при беременности постепенно возрастает до 100 нг/мл к концу беременности. Основная функция пролактина - подготовка молочных желёз к лактации.

Рилизинг гормоны . В плаценте происходит синтез всех известных гипоталамических рилизинг–гормонов и соматостатина (см. табл. 18–10).


© 2024
colybel.ru - О груди. Заболевания груди, пластическая хирургия, увеличение груди